Farklı görünür diffüzyon katsayısı değerlerinin pediatrik abdomen ve pelvisin solid malign ve benign tümörlerini ayırt etmedeki yeri
Yıl 2023,
Cilt: 22 Sayı: 2, 90 - 97, 31.08.2023
Buğra Kaan Aşılıoğlu
Çiğdem Öztunalı
Öz
Giriş ve Amaç: Diffüzyon ağırlıklı manyetik rezonans görüntüleme, tümörlerin karakterize edilmesinde kullanılabilen invaziv olmayan bir görüntüleme yöntemidir. Diffüzyon görüntülerinden elde olunan görünür diffüzyon katsayısı haritaları üzerinde ilgili bölge ölçümleri ile yoğun hücresellik içeren tümör komponentlerinin niceliği saptanabilir. Çocukların abdominopelvik incelemelerinde solid benign tümörlerin diffüzyon özellikleri ile görünür diffüzyon katsayısı değerlerinin bu bölgenin solid benign ve solid malign tümörlerini birbirinden ayırt etmedeki rolü iyi tanımlanmamıştır. Gereç ve Yöntem: Bu çalışmada abdomen ya da pelviste solid kitlesi saptanan 49 çocuk hastada, farklı görünür diffüzyon katsayısı değeri ölçümlerinin solid malign kitleleri solid benign kitlelerden ayırt etmedeki yerinin araştırılması hedeflenmiştir. Altgrup analizi olarak, bu görünür diffüzyon katsayısı değerlerinin Wilms tümörü ve nöroblastomun birbirinden ayırt edilmesindeki yeri araştırılmıştır. Bulgular: Tüm görünür diffüzyon katsayısı değerlerinin solid malign abdominopelvik kitlelerde benign olanlara kıyasla istatistiksel olarak anlamlı düşük olduğu bulunmuştur. Wilms tümörü ve nöroblastom arasında ise ölçülen görünür diffüzyon katsayısı değerlerinde farklılık saptanmamıştır. Sonuç: Görünür diffüzyon katsayısı değerleri solid malign tümörleri benign tümörlerden ayırmada yardımcıdır. Wilms ve neruoblastom ayrımında yeri kısıtlı olabilir.
Kaynakça
- 1. McHugh K, Roebuck DJ. Pediatric oncology surveillance imaging: two recommendations. Abandon CT scanning, and randomize to imaging or solely clinical follow-up. Pediatr Blood Cancer 2014;61:3-6.
- 2. Meeus EM, Zarinabad N, Manias KA, et al. Diffusion-weighted MRI and intravoxel incoherent motion model for diagnosis of pediatric solid abdominal tumors. J Magn Reson Imaging 2018;47:1475-86.
- 3. Aslan M, Aslan A, Arıöz Habibi H, et al. Diffusion-weighted MRI for differentiating Wilms tumor from neuroblastoma. Diagn Interv Radiol 2017;23:403-6.
- 4. Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR Imaging: clinical applications. AJR Am Roentgenol 1992;159:591-9.
- 5. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188:1622-35.
- 6. Abdel Razek AAK, Soliman N, Elashery R. Apparent diffusion coefficient values of mediastinal masses in children. Eur J Radiol 2012;81:1311-4.
- 7. Neubauer H, Li M, Müller VR, Pabst T, Beer M. Diagnostic Value of Diffusion-Weighted MRI for Tumor Characterization, Differentiation and Monitoring in Pediatric Patients with Neuroblastic Tumors. RoFo. 2017;189:640-50.
- 8. Vilanova JC, Baleato S, Balliu E. Musculoskeletal applications of DWI. In: Luna A, Ribes R, Soto JA, (Eds). Diffusion MRI outside the brain: a case-based review and clinical applications. Heidelberg: Springer; 2012;339-64.15.
- 9. McDonald K, Sebire NJ, Anderson J, Olsen OE. Patterns of shift in ADC distributions in abdominal tumours during chemotherapy-feasibility study. Pediatr Radiol 2011;41:99-106.
- 10. Caro-Domínguez P, Gupta AA, Chavhan GB. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr Radiol 2018;48:85-93.
- 11. Sodhi KS. Diffusion-Weighted MRI in Children with Hepatoblastoma. Indian J Pediatr 2022;89:961.
- 12. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: Prospective study in 66 patients. Radiology 2003;226:71-8.
- 13. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 2009;29:1797-810.
- 14. Platzer I, Li M, Winkler B, et al. Detection and differentiation of paediatric renal tumours using diffusion-weighted imaging: an explorative retrospective study. Cancer Res Front 2015;1:178-90.
- 15. Gahr N, Darge K, Hahn G et al. Diffusion-weighted MRI for differentiation of Neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol 2011;79:443-6.
- 16. Humphries PD, Sebire NJ, Siegel MJ, Olsen ØE. Tumors in pediatric patients at diffusion-weighted MR imaging: Apparent diffusion coefficient and tumor cellularity. Radiology 2007;245:848-54.
- 17. Kocaoglu M, Bulakbasi N, Sanal HT, et al. Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 2010;28:629-36.
- 18. Gawande RS, Gonzalez G, Messing S, et al. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 2013;43:836-45.
- 19. Surov A, Caysa H, Wienke A, Spielmann RP, Fiedler E. Correlation Between Different ADC Fractions, Cell Count, Ki-67, Total Nucleic Areas and Average Nucleic Areas in Meningothelial Meningiomas. Anticancer Res 2015;35:6841-6.
- 20. Namimoto T, Nakagawa M, Kizaki Y, et al. Characterization of Liver Tumors by Diffusion-Weighted Imaging: Comparison of Diagnostic Performance Using the Mean and Minimum Apparent Diffusion Coefficient. J Comput Assist Tomogr 2015;39:453-61.
- 21. Song JS, Hwang SB, Chung GH, Jin YG. Intra-individual, inter-vendor comparison of diffusion-weighted mr imaging of upper abdominal organs at 3.0 tesla with an emphasis on the value of normalization with the spleen. Korean J Radiol 2016;17:209-17.
The role of different apparent diffusion coefficient values in differentiating malignant from benign solid tumors of the pediatric abdomen and pelvis
Yıl 2023,
Cilt: 22 Sayı: 2, 90 - 97, 31.08.2023
Buğra Kaan Aşılıoğlu
Çiğdem Öztunalı
Öz
Background and Aims: Diffusion-weighted magnetic resonance imaging is a non-invasive method that can be used in the characterization of tumors, by the quantification of highly cellular tumor components with the use of region of interest measurements on the generated apparent diffusion coefficient maps. The diffusion characteristics of the solid benign tumors of the abdomen and pelvis in children, and the role of apparent diffusion coefficient values in distinguishing solid malignant from solid benign tumors are not well defined. Materials and Method: This study retrospectively evaluated the role of different fractions of the measured and calculated apparent diffusion coefficient values in 49 children with a solid mass lesion of the abdomen or pelvis to determine whether those values allow for distinguishing malignant from benign solid lesions. A subgroup evaluation included the analysis of the apparent diffusion coefficient values in distinguishing Wilms tumor from neuroblastoma. Results: All fractions of apparent diffusion coefficient values were statistically significantly lower in the solid malignant tumors than in the solid benign tumors, with the mean normalized apparent diffusion coefficient values having higher sensitivity and specificity rates. The apparent diffusion coefficient values did not significantly differ between Wilms tumor and neuroblastoma. Conclusions: Apparent diffusion coefficient values can help differentiate malignant from benign solid tumors. Their role can be limited in differentiating Wilms tumor from neuroblastoma.
Kaynakça
- 1. McHugh K, Roebuck DJ. Pediatric oncology surveillance imaging: two recommendations. Abandon CT scanning, and randomize to imaging or solely clinical follow-up. Pediatr Blood Cancer 2014;61:3-6.
- 2. Meeus EM, Zarinabad N, Manias KA, et al. Diffusion-weighted MRI and intravoxel incoherent motion model for diagnosis of pediatric solid abdominal tumors. J Magn Reson Imaging 2018;47:1475-86.
- 3. Aslan M, Aslan A, Arıöz Habibi H, et al. Diffusion-weighted MRI for differentiating Wilms tumor from neuroblastoma. Diagn Interv Radiol 2017;23:403-6.
- 4. Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR Imaging: clinical applications. AJR Am Roentgenol 1992;159:591-9.
- 5. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188:1622-35.
- 6. Abdel Razek AAK, Soliman N, Elashery R. Apparent diffusion coefficient values of mediastinal masses in children. Eur J Radiol 2012;81:1311-4.
- 7. Neubauer H, Li M, Müller VR, Pabst T, Beer M. Diagnostic Value of Diffusion-Weighted MRI for Tumor Characterization, Differentiation and Monitoring in Pediatric Patients with Neuroblastic Tumors. RoFo. 2017;189:640-50.
- 8. Vilanova JC, Baleato S, Balliu E. Musculoskeletal applications of DWI. In: Luna A, Ribes R, Soto JA, (Eds). Diffusion MRI outside the brain: a case-based review and clinical applications. Heidelberg: Springer; 2012;339-64.15.
- 9. McDonald K, Sebire NJ, Anderson J, Olsen OE. Patterns of shift in ADC distributions in abdominal tumours during chemotherapy-feasibility study. Pediatr Radiol 2011;41:99-106.
- 10. Caro-Domínguez P, Gupta AA, Chavhan GB. Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr Radiol 2018;48:85-93.
- 11. Sodhi KS. Diffusion-Weighted MRI in Children with Hepatoblastoma. Indian J Pediatr 2022;89:961.
- 12. Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: Prospective study in 66 patients. Radiology 2003;226:71-8.
- 13. Qayyum A. Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 2009;29:1797-810.
- 14. Platzer I, Li M, Winkler B, et al. Detection and differentiation of paediatric renal tumours using diffusion-weighted imaging: an explorative retrospective study. Cancer Res Front 2015;1:178-90.
- 15. Gahr N, Darge K, Hahn G et al. Diffusion-weighted MRI for differentiation of Neuroblastoma and ganglioneuroblastoma/ganglioneuroma. Eur J Radiol 2011;79:443-6.
- 16. Humphries PD, Sebire NJ, Siegel MJ, Olsen ØE. Tumors in pediatric patients at diffusion-weighted MR imaging: Apparent diffusion coefficient and tumor cellularity. Radiology 2007;245:848-54.
- 17. Kocaoglu M, Bulakbasi N, Sanal HT, et al. Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 2010;28:629-36.
- 18. Gawande RS, Gonzalez G, Messing S, et al. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 2013;43:836-45.
- 19. Surov A, Caysa H, Wienke A, Spielmann RP, Fiedler E. Correlation Between Different ADC Fractions, Cell Count, Ki-67, Total Nucleic Areas and Average Nucleic Areas in Meningothelial Meningiomas. Anticancer Res 2015;35:6841-6.
- 20. Namimoto T, Nakagawa M, Kizaki Y, et al. Characterization of Liver Tumors by Diffusion-Weighted Imaging: Comparison of Diagnostic Performance Using the Mean and Minimum Apparent Diffusion Coefficient. J Comput Assist Tomogr 2015;39:453-61.
- 21. Song JS, Hwang SB, Chung GH, Jin YG. Intra-individual, inter-vendor comparison of diffusion-weighted mr imaging of upper abdominal organs at 3.0 tesla with an emphasis on the value of normalization with the spleen. Korean J Radiol 2016;17:209-17.