Research Article
BibTex RIS Cite

SUSTAINABILITY ASSESSMENT TOOLS AS DECISION SUPPORT IN BUILDING DESIGN

Year 2020, Volume: 3 Issue: 1, 66 - 91, 25.02.2020

Abstract

Nowadays environmental performance has become an important criterion in building design with the acknowledgement of negative environmental impacts of buildings. What is expected from the environmental performance of a building is that the resource consumption associated with building processes and the effects of this consumption on people and the environment are minimized, while the total building quality and life quality are maximized. At the point reached today, in order for the environmental performance of a building to be sustainable, it is necessary to make the most appropriate design decisions in the design process in terms of environment and human and to evaluate these decisions on the basis of relevant sustainability targets. In this context, Building Sustainability Assessment Tools (BSAT) have gained importance as the tools have been used in determining the environmental performance of the building qualitatively and/or quantitatively and in establishing how sustainable they are. These tools can also make serious contributions to the sustainable design process in making design decisions and in evaluating the results of these decisions, thereby in selecting the optimum choice among the sustainable design alternatives. This research aims to discuss the potential of using the tools used for building sustainability assessment as decision support in building design. Motivated by this purpose, the roles of sustainability assessment tools in the building design process were evaluated based on the scope and features of those tools that can provide decision support, by making up-to-date research studies. Revealing the promised benefits of the use of sustainability assessment tools and to clearly defining their roles in the sustainable architectural design process is important from the perspectives of supporting the designers in achieving the goal of sustainability and integrating the sustainability assessment tools into the architectural design process for providing decision support. In order to create a more livable built environment, sustainability assessments, which provide data base to the architectural design process have become important tools that support sustainable architectural design thinking.

References

  • Ali, H. H. ve Nsairat, S.F. (2009). Developing a green building assessment tool for developing countries – Case of Jordan. Building and Environment, 44, 1053– 1064.
  • Assefaa, G. Glaumannb, M. Malmqvistc, T. Kindembed, B. Hulte, M. Myhre, U. ve Eriksson, O. (2007). Environmental Assessment of Building Properties-Where Natural and Social Sciences Meet: The Case of EcoEffect. Building and Environment, 42, 1458–1464.
  • Azhar, S., Carlton, W. A., Olsen, D. ve Ahmad, I. (2011). Building information modeling for sustainable design and LEED rating analysis. Automation in Construction, 20, 217–224.
  • Berardi, U. (2013). Clarifying the new interpretations of the concept of sustainable building. Sustainable Cities and Society, 8, 72–78.
  • Braganca, L., Mateus, R. ve Koukkari, H. (2010). Building Sustainability Assessment. Sustainability, 2, 2010-2023.
  • Chandratilake, S.R. ve Dias, W.P.S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22-28.
  • Cole, R. J. (1997). Prioritizing Environmental Criteria in Building Design and Assessment. P.S. Brandon, P.L. Lombardi ve V. Bentivegna (Eds.). Evaluation of the Built Environment for Sustainability içinde (183-199), London: E & FN Spon.
  • Cole, R. J. (1999). Building environmental assessment methods: clarifying intentions. Building Research & Information, 27 (4-5), 230-246.
  • Cole, R. J. (2005). Building Environmental Assessment Methods: Redefining Intentions and Roles. Building Research & Information, 35(5), 455-467.
  • Cole, R. J., Ikaga, T., Howard, N. ve Nibel, S. (2005). Building Environmental Assessment Tools: Current and Future Roles. Issue paper, World Sustainable Building Conference, Tokyo.
  • Crawley, D. ve Aho, I. (1999). Building environmental assessment methods: applications and development trends. Building Research & Information, 27(4), 300-308.
  • Ding, G. K. C. (2008). Sustainable construction-The role of environmental assessment tools. Journal of Environmental Management, 86, 451–464.
  • Ebert, T. Ebig, N. ve Hauser, G. (2011). Green Building Certification Systems: Assessing Sustainability-International System Comparison-Economic Impact of Certifications. Detail Green Books. Munich: Institute for International Documentation of Architecture.
  • Fenner, R. A. ve Ryce, T. (2008). A comparative analysis of two building rating systems Part 1: Evaluation. Proceedings of the ICE-Engineering Sustainability, 161(1), 55-63.
  • Fowler, K.M. ve Rauch, E.M. (2006). Sustainable Building Rating Systems Summary. PNNL 15858. Pacific Northwest National Laboratory.
  • Haapio, A. (2008). Environmental Assessment of Buildings. Yayımlanmamış Doktora Tezi. Espoo, Finland: Helsinki University of Technology.
  • Haapio, A. ve Viitaniemi, P. (2008). A Critical Review of Building Environmental Assessment Tools. Environmental Impact Assessment Review, 28, 469–482.
  • Hopfe, C. J. (2009). Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization. Doktora tezi. Eindhoven: Technische Universiteit Eindhoven.
  • Kajikawa, Y., Inoue, T. ve Goh, T. N. (2011). Analysis of building environment assessment frameworks and their implications for sustainability indicators. Sustain Sci, 6:233–246.
  • Kim, J. J. ve Rigdon, B. (1998). Sustainable Architecture Module: Introduction to Sustainable Design. National Pollution Prevention Center for Higher Education. The University of Michigan, Michigan, 8-15.
  • Kohler, N. (1999). The Relevance of the Green Building Challenge: an Observer’s Perspective. Building Research & Information, 27, 309–320.
  • Lamborn, C., Altomonte, S., Luther, M. B. ve Fuller, R. (2006). Ecologically Sustainable Development and Architecture: the impact of rating tools. The 23rd Conference on Passive and Low Energy Architecture-PLEA2006. 6-8 September 2006. Geneva, Switzerland.
  • Lee, W. L. (2013). A comprehensive review of metrics of building environmental assessment schemes. Energy and Buildings, 62, 403-413.Lefebvre, H. (1991). The Social Production of Space. Oxford: Blackwell.
  • Loh E., Crosbie T., Dawood N. ve Dean, J. (2010). A framework and decision support system to increase building life cycle energy performance, Journal of Information Technology in Construction (ITcon), Vol. 15, 337-353.
  • Loots, M. J. ve Irurah, D. K. (2005). Towards Integration of Sustainability Performance Assessment Outcomes Into Design Decision-Making Processes for Buildings in Southern Africa. World Sustainable Building Conference, September 27-29, Tokyo.
  • Malmqvist, T., Glaumann, M., Scarpellini, S., Zabalza, I., Aranda, A., Llera, E. ve Díaz, S. (2010). Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. Energy, 1-8.
  • Mclennan, J. F. (2004). The Philosophy Of Sustainable Design, Ecotone.
  • Magent, C. S., Korkmaz, S., Klotz, L. E., ve Riley, D. R. (2011). A Design Process Evaluation Method for Sustainable Buildings. Architectural Engineering and Design Management, 5:1-2, 62-74.
  • Mateus, R. ve Bragança, L. (2011). Sustainability assessment and rating of buildings: Developing the methodology SBTool. Building and Environment, 46, 1962-1971.
  • Morbitzer, C. A., Srtachan, P., Webster, J., Spires, B. ve Cafferty, D. (2001). Integration of Building Simulation into the Design Process of an Architecture Practice. Seventh International IBPSA Conference. Rio de Janeiro, Brazil. 13-15 August.
  • Morbitzer, C. A. (2003). Towards the Integration of Simulation into the Building Design Process. Doktora Tezi. Energy System Research Unit Department of Mechanical Engineering, University of Strathclyde.
  • Papamichael, K. (2000). Green building performance prediction/assessment. Building Research & Information, 28(5-6), 394-402.
  • Sassi, P. (2006). Strategies for Sustainable Architecture. Taylor & Francis.
  • Soebarto, V. I. ve Williamson T. J. (2001). Multi-criteria assessment of building performance: theory and implementation. Building and Environment, 36, 681–690.
  • Stender M. ve Walter, A. (2018). The role of social sustainability in building assessment. Building Research & Information, 47 (1), 1-13.
  • Trusty, W. B. (2000). Introducing assessment tool classification system. Advanced Building Newsletter, 25(7), Athena Classification, Athena Institute, Canada.
  • Wang, W., Zmeureanua, R. ve Rivard, H. (2005). Applying multi-objective genetic algorithms in green building design optimization. Building and Environment, 40, 1512–1525.
  • Wilde, P. 2004. Computational Support for the Selection of Energy Saving Building Components. Doktora Tezi. TU Delft.
  • Wilde, P. ve Voorden, M. (2003). Computational Support for the Selection of Energy Saving Building Components. Eighth International IBPSA Conference, Eindhoven, Netherlands. August, 11-14.
  • http-1: IEA Annex 31, (2004). Energy related environmental impact of buildings. http://www.iisbe.org/annex31/pdf/D_types_tools.pdf (Erişim Tarihi: 19.01.2020).

BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI

Year 2020, Volume: 3 Issue: 1, 66 - 91, 25.02.2020

Abstract

Günümüzde yapıların olumsuz çevresel etkilerinin kabul edilmesiyle birlikte bina tasarımında çevresel performans önemli bir kriter haline gelmiştir. Bir yapının çevresel performansından beklenen, toplam yapı kalitesi ve yaşam kalitesi maksimize edilirken, yapı yapma süreçleri ile ilişkili kaynak tüketiminin ve bu tüketimin insan ve çevre üzerinde yaratacağı etkilerin minimize edilmesidir. Bugün gelinen noktada bir binanın çevresel performansının sürdürülebilir olabilmesi için, tasarım sürecinde çevre ve insan açısından en doğru tasarım kararlarının en uygun aşamada verilmesi ve bu kararların ilgili sürdürülebilirlik hedefleri temelinde değerlendirilmesi gerekmektedir. Bu kapsamda, Bina Sürdürülebilirlik Değerlendirme Araçları (Building Sustainability Assessment Tools-BSAT) yapının çevresel performansının nitel ve/veya nicel olarak belirlenmesinde ve ne kadar sürdürülebilir olduğunun ortaya konulmasında kullanılan araçlar olarak önem kazanmıştır. Söz konusu araçlar ayrıca, sürdürülebilir tasarım sürecinde, tasarım kararlarının oluşturulmasında ve bu kararların sonuçlarının değerlendirilmesinde, böylelikle sürdürülebilir tasarım alternatifleri arasında optimum olanın seçilmesi yönünde ciddi katkılar sağlayabilmektedir. Bu araştırma, bina sürdürülebilirlik değerlendirmesi için kullanılan araçların bina tasarımında karar desteği olarak kullanılabilmesi potansiyelini tartışmayı amaçlamaktadır. Bu amaçla güncel araştırma çalışmaları yapılarak karar desteği sağlayabilecek araçların kapsamları ve özellikleri temelinde sürdürülebilirlik değerlendirme araçlarının bina tasarım sürecindeki rolleri değerlendirilmiştir. Sürdürülebilirlik değerlendirme araçlarının kullanımlarına ilişkin potansiyel faydalarının ortaya konulması ve sürdürülebilir mimari tasarım sürecindeki rollerinin açık bir şekilde tanımlanması, sürdürülebilirlik amacına ulaşmak konusunda tasarımcıları desteklemesi ve sürdürülebilirlik değerlendirme araçlarının karar desteği oluşturacak şekilde mimari tasarım sürecine entegre edilmesi yönüyle önemlidir. Daha yaşanabilir bir yapılı çevre oluşturmak üzere mimari tasarım sürecine veri desteği sağlayan sürdürülebilirlik değerlendirmeleri bu şekilde sürdürülebilir mimari tasarım düşüncesini destekleyen önemli araçlar haline gelmektedir.

References

  • Ali, H. H. ve Nsairat, S.F. (2009). Developing a green building assessment tool for developing countries – Case of Jordan. Building and Environment, 44, 1053– 1064.
  • Assefaa, G. Glaumannb, M. Malmqvistc, T. Kindembed, B. Hulte, M. Myhre, U. ve Eriksson, O. (2007). Environmental Assessment of Building Properties-Where Natural and Social Sciences Meet: The Case of EcoEffect. Building and Environment, 42, 1458–1464.
  • Azhar, S., Carlton, W. A., Olsen, D. ve Ahmad, I. (2011). Building information modeling for sustainable design and LEED rating analysis. Automation in Construction, 20, 217–224.
  • Berardi, U. (2013). Clarifying the new interpretations of the concept of sustainable building. Sustainable Cities and Society, 8, 72–78.
  • Braganca, L., Mateus, R. ve Koukkari, H. (2010). Building Sustainability Assessment. Sustainability, 2, 2010-2023.
  • Chandratilake, S.R. ve Dias, W.P.S. (2013). Sustainability rating systems for buildings: Comparisons and correlations. Energy, 59, 22-28.
  • Cole, R. J. (1997). Prioritizing Environmental Criteria in Building Design and Assessment. P.S. Brandon, P.L. Lombardi ve V. Bentivegna (Eds.). Evaluation of the Built Environment for Sustainability içinde (183-199), London: E & FN Spon.
  • Cole, R. J. (1999). Building environmental assessment methods: clarifying intentions. Building Research & Information, 27 (4-5), 230-246.
  • Cole, R. J. (2005). Building Environmental Assessment Methods: Redefining Intentions and Roles. Building Research & Information, 35(5), 455-467.
  • Cole, R. J., Ikaga, T., Howard, N. ve Nibel, S. (2005). Building Environmental Assessment Tools: Current and Future Roles. Issue paper, World Sustainable Building Conference, Tokyo.
  • Crawley, D. ve Aho, I. (1999). Building environmental assessment methods: applications and development trends. Building Research & Information, 27(4), 300-308.
  • Ding, G. K. C. (2008). Sustainable construction-The role of environmental assessment tools. Journal of Environmental Management, 86, 451–464.
  • Ebert, T. Ebig, N. ve Hauser, G. (2011). Green Building Certification Systems: Assessing Sustainability-International System Comparison-Economic Impact of Certifications. Detail Green Books. Munich: Institute for International Documentation of Architecture.
  • Fenner, R. A. ve Ryce, T. (2008). A comparative analysis of two building rating systems Part 1: Evaluation. Proceedings of the ICE-Engineering Sustainability, 161(1), 55-63.
  • Fowler, K.M. ve Rauch, E.M. (2006). Sustainable Building Rating Systems Summary. PNNL 15858. Pacific Northwest National Laboratory.
  • Haapio, A. (2008). Environmental Assessment of Buildings. Yayımlanmamış Doktora Tezi. Espoo, Finland: Helsinki University of Technology.
  • Haapio, A. ve Viitaniemi, P. (2008). A Critical Review of Building Environmental Assessment Tools. Environmental Impact Assessment Review, 28, 469–482.
  • Hopfe, C. J. (2009). Uncertainty and sensitivity analysis in building performance simulation for decision support and design optimization. Doktora tezi. Eindhoven: Technische Universiteit Eindhoven.
  • Kajikawa, Y., Inoue, T. ve Goh, T. N. (2011). Analysis of building environment assessment frameworks and their implications for sustainability indicators. Sustain Sci, 6:233–246.
  • Kim, J. J. ve Rigdon, B. (1998). Sustainable Architecture Module: Introduction to Sustainable Design. National Pollution Prevention Center for Higher Education. The University of Michigan, Michigan, 8-15.
  • Kohler, N. (1999). The Relevance of the Green Building Challenge: an Observer’s Perspective. Building Research & Information, 27, 309–320.
  • Lamborn, C., Altomonte, S., Luther, M. B. ve Fuller, R. (2006). Ecologically Sustainable Development and Architecture: the impact of rating tools. The 23rd Conference on Passive and Low Energy Architecture-PLEA2006. 6-8 September 2006. Geneva, Switzerland.
  • Lee, W. L. (2013). A comprehensive review of metrics of building environmental assessment schemes. Energy and Buildings, 62, 403-413.Lefebvre, H. (1991). The Social Production of Space. Oxford: Blackwell.
  • Loh E., Crosbie T., Dawood N. ve Dean, J. (2010). A framework and decision support system to increase building life cycle energy performance, Journal of Information Technology in Construction (ITcon), Vol. 15, 337-353.
  • Loots, M. J. ve Irurah, D. K. (2005). Towards Integration of Sustainability Performance Assessment Outcomes Into Design Decision-Making Processes for Buildings in Southern Africa. World Sustainable Building Conference, September 27-29, Tokyo.
  • Malmqvist, T., Glaumann, M., Scarpellini, S., Zabalza, I., Aranda, A., Llera, E. ve Díaz, S. (2010). Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. Energy, 1-8.
  • Mclennan, J. F. (2004). The Philosophy Of Sustainable Design, Ecotone.
  • Magent, C. S., Korkmaz, S., Klotz, L. E., ve Riley, D. R. (2011). A Design Process Evaluation Method for Sustainable Buildings. Architectural Engineering and Design Management, 5:1-2, 62-74.
  • Mateus, R. ve Bragança, L. (2011). Sustainability assessment and rating of buildings: Developing the methodology SBTool. Building and Environment, 46, 1962-1971.
  • Morbitzer, C. A., Srtachan, P., Webster, J., Spires, B. ve Cafferty, D. (2001). Integration of Building Simulation into the Design Process of an Architecture Practice. Seventh International IBPSA Conference. Rio de Janeiro, Brazil. 13-15 August.
  • Morbitzer, C. A. (2003). Towards the Integration of Simulation into the Building Design Process. Doktora Tezi. Energy System Research Unit Department of Mechanical Engineering, University of Strathclyde.
  • Papamichael, K. (2000). Green building performance prediction/assessment. Building Research & Information, 28(5-6), 394-402.
  • Sassi, P. (2006). Strategies for Sustainable Architecture. Taylor & Francis.
  • Soebarto, V. I. ve Williamson T. J. (2001). Multi-criteria assessment of building performance: theory and implementation. Building and Environment, 36, 681–690.
  • Stender M. ve Walter, A. (2018). The role of social sustainability in building assessment. Building Research & Information, 47 (1), 1-13.
  • Trusty, W. B. (2000). Introducing assessment tool classification system. Advanced Building Newsletter, 25(7), Athena Classification, Athena Institute, Canada.
  • Wang, W., Zmeureanua, R. ve Rivard, H. (2005). Applying multi-objective genetic algorithms in green building design optimization. Building and Environment, 40, 1512–1525.
  • Wilde, P. 2004. Computational Support for the Selection of Energy Saving Building Components. Doktora Tezi. TU Delft.
  • Wilde, P. ve Voorden, M. (2003). Computational Support for the Selection of Energy Saving Building Components. Eighth International IBPSA Conference, Eindhoven, Netherlands. August, 11-14.
  • http-1: IEA Annex 31, (2004). Energy related environmental impact of buildings. http://www.iisbe.org/annex31/pdf/D_types_tools.pdf (Erişim Tarihi: 19.01.2020).
There are 40 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Gülşah Doğan

Publication Date February 25, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Doğan, G. (2020). BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI. GSI Journals Serie C: Advancements in Information Sciences and Technologies, 3(1), 66-91.
AMA Doğan G. BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI. AIST. February 2020;3(1):66-91.
Chicago Doğan, Gülşah. “BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI”. GSI Journals Serie C: Advancements in Information Sciences and Technologies 3, no. 1 (February 2020): 66-91.
EndNote Doğan G (February 1, 2020) BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI. GSI Journals Serie C: Advancements in Information Sciences and Technologies 3 1 66–91.
IEEE G. Doğan, “BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI”, AIST, vol. 3, no. 1, pp. 66–91, 2020.
ISNAD Doğan, Gülşah. “BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI”. GSI Journals Serie C: Advancements in Information Sciences and Technologies 3/1 (February 2020), 66-91.
JAMA Doğan G. BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI. AIST. 2020;3:66–91.
MLA Doğan, Gülşah. “BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI”. GSI Journals Serie C: Advancements in Information Sciences and Technologies, vol. 3, no. 1, 2020, pp. 66-91.
Vancouver Doğan G. BİNA TASARIMINDA KARAR DESTEĞİ OLARAK SÜRDÜRÜLEBİLİRLİK DEĞERLENDİRME ARAÇLARI. AIST. 2020;3(1):66-91.