Research Article
BibTex RIS Cite

Changes in hardness values of Scotch pine (Pinus sylvestris L.) heat treated with tannin modification under different climatic conditions.

Year 2023, Volume: 1 Issue: 1, 17 - 27, 31.12.2023

Abstract

It is known that wood material undergoes dimensional changes due to its hygroscopic property. Various methods, such as impregnation and thermal treatment modification, are also applied to protect wood material against biological hazards. These methods have both advantages and disadvantages relative to each other. Thermal modification (heat treatment) generally results in a decrease in the mechanical properties of the wood materials. The most important factors contributing to this decrease in mechanical properties are the type of tree, exposure temperature, and duration. As the exposure temperature and time increase, the mechanical properties of wood decrease. In this study, samples obtained from Scots Pine (Pinus sylvestris L.) wood were impregnated with a 10% oak acorn tannin solution and subjected to thermal treatment at 150℃ for 2 hours to minimize the deteriorating effect of heat treatment and increase mechanical resistance. The samples were then conditioned under three different climate conditions: 20℃ and 65% relative humidity, 40℃ and 35% relative humidity, and 10℃ and 50% relative humidity. Density, equilibrium moisture content, and Brinell hardness values of the samples were determined after the processes. A 20% increase in hardness values was observed in the tannin-modified samples conditioned at 40℃ and 35% relative humidity.

References

  • [1] Pelit, H., Sönmez, A., Budakçı, M., “Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scotch pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.)”, BioResources, 10:2 (2015) 3097-3111. DOI: 10.15376/biores.10.2.3097-3111.
  • [2] Kurt, Ş., Özçifçi, A., ““Effect of various fire retardants on Brinell hardness of some wood”, BioResources, 4:3 (2009) 960-969. DOI: 10.15376/biores.4.3.960-969.
  • [3] Esteves, B.M., Pereira, H.M., 2009. “Wood modification by heat treatment: A review”, BioResources, 4:1 (2009) 370-404. DOI: 10.15376/biores.4.1.370-404.
  • [4] Korkut, S., Kocaefe, D., “Isıl işlemin odun özellikleri üzerine etkisi”, Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 5:2 (2009) 11-34.
  • [5] Robert, W.C., Brischke, C., “Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber”, Wood Material Science and Engineering, 2:2 (2007) 66-76. DOI: 10.1080/17480270701770606.
  • [6] Calonego, F. W., Severo, E.T.D., Ballarin, A.W., “Physical and mechanical properties of thermally modified wood from E. Grandis”, European Journal of Wood and Wood Products, 70:4 (2012) 453-460. DOI: 10.1007/s00107-011-0568-5.
  • [7] Almeida, G., Brito, J. O., Perre, P., “Changes in wood-water relationship due to heat treatment assessed on micro-samples of three Eucalyptus species”, Holzforschung, 63 (2009) 80-88. DOI: 10.1515/HF.2009.026.
  • [8] Bal, B. C., “A comparative study of the physical properties of thermally treated poplar and plane woods”, BioResources, 8:4 (2013) 6493-6500. DOI: 10.15376/biores.8.4.6493-6500.
  • [9] Kocaefe, D., Poncsak, S., Boluk, Y., “Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen”, BioResources, 3:2 (2008) 517-537. DOI: 10.15376/biores.3.2.517-537.
  • [10] Hirata, S., Ohta, M., Honma, Y., “Hardness distribution on wood surface”, Journal of Wood Science, 47 (2001) 1-7. DOI: 10.1007/BF00776637
  • [11] Jimenez, J.P., Acda, M.N., Razal, R.A., “Physico-Mechanical properties and durability of thermally modified malapapaya [polyscias nodosa (blume) seem.] wood”, Philippine journal of science, 140 (2011) 13-23.
  • [12] Gündüz, G., Korkut, S., Korkut, D. S., “The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood”, Bioresource technology, 99:7 (2008) 2275-2280. DOI: 10.1016/j.biortech.2007.05.015.
  • [13] Korkut, S., Budakçı. M., “Effect of high-temperature treatment on the mechanical properties of rowan (Sorbus aucuparia L.) wood”, Drying Technology, 27:11 (2009) 1240-1247. DOI: 10.1080/07373930903267161.
  • [14] Güneş, M., Altunok, M., “Ön Isıl İşlem Uygulanmış Ahşap Kirişlerin Farklı İklim Şartlarındaki Mekanik Davranışlarının İncelenmesi”, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10:2 (2022) 300-313. DOI: 10.29109/gujsc.1030245.
  • [15] Modes, K. S., Santini, E.J., Vivian, M.A., Haselein, C.R., “Effect of heat treatment on mechanical properties of Pinus taeda and Eucalyptus grandis woods”, Ciência Florestal, 27:1 (2017) 291-302. DOI: https://doi.org/10.5902/1980509826467
  • [16] Uluata, A. R., “Ağaç malzemenin mekanik özelliklerine etki eden faktörler”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 18 (2011) 1-4.
  • [17] ISO 13061-12, 2017. Specifies a method for determining of the static hardness of wood by measuring resistance of a test piece to the penetration of a plunger under gradually increasing load.
  • [18] ASTM D4366-16, 2021. Standard Test Methods for Hardness of Organic Coatings by Pendulum Damping Tests.

Tanen modifiyesi ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) farklı ilkim şartlarında sertlik değerlerindeki değişimler

Year 2023, Volume: 1 Issue: 1, 17 - 27, 31.12.2023

Abstract

Ahşap malzemenin higroskopik özelliği nedeni ile boyutsal değişikliğe uğradığı bilinmektedir. Aynı zamanda biyolojik zararlılara karşı ahşap malzemeyi korumak için emprenye ve ısıl işlem modifikasyonu gibi çeşitli yöntemler uygulanmaktadır. Kullanılan bu yöntemlerin birbirlerine göre üstünlükleri ve olumsuz özellikleri de bulunmaktadır. Termal modifikasyon (ısıl işlem) uygulanan ahşap malzemelerin mekanik özelliklerinin genel olarak düşüş gösterdiği bilinmektedir. Mekanik özelliklerdeki bu düşüşün bilinen en önemli etkenleri; ağaç türü, maruz kalma sıcaklığı ve süresidir. Isıl işlem sıcaklığı ve maruz kalma süresi arttıkça ahşabın mekanik özellikleri azalmaktadır. Bu çalışmada, ısıl işlemin bozundurucu etkisini en aza indirmek ve mekanik direnci artırmak için Sarıçam (Pinus sylvestris L.) odunundan elde edilen örnekler %10’luk meşe palamudu taneni çözeltisi ile emprenye edikten sonra 150℃’de 2 saat ısıl işleme tabi tutulmuştur. Daha sonra örnekler 20℃ sıcaklık ve %65 bağıl nem, 40℃ sıcaklık ve %35 bağıl nem ve 10℃ sıcaklık ve %50 bağıl nem iklim şartlarında kondüsyonlanmıştır. İşlemler sonrası örneklerin yoğunluk, denge rutubeti ve Brinell sertlik değerleri belirlenmiştir. Tanen modifiyeli ve 40℃ sıcaklık ve %35 bağıl nemde iklimlendirilen örneklerin sertlik değerlerinde %20 artış gerçekleşmiştir.

References

  • [1] Pelit, H., Sönmez, A., Budakçı, M., “Effects of thermomechanical densification and heat treatment on density and Brinell hardness of Scotch pine (Pinus sylvestris L.) and Eastern beech (Fagus orientalis L.)”, BioResources, 10:2 (2015) 3097-3111. DOI: 10.15376/biores.10.2.3097-3111.
  • [2] Kurt, Ş., Özçifçi, A., ““Effect of various fire retardants on Brinell hardness of some wood”, BioResources, 4:3 (2009) 960-969. DOI: 10.15376/biores.4.3.960-969.
  • [3] Esteves, B.M., Pereira, H.M., 2009. “Wood modification by heat treatment: A review”, BioResources, 4:1 (2009) 370-404. DOI: 10.15376/biores.4.1.370-404.
  • [4] Korkut, S., Kocaefe, D., “Isıl işlemin odun özellikleri üzerine etkisi”, Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 5:2 (2009) 11-34.
  • [5] Robert, W.C., Brischke, C., “Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber”, Wood Material Science and Engineering, 2:2 (2007) 66-76. DOI: 10.1080/17480270701770606.
  • [6] Calonego, F. W., Severo, E.T.D., Ballarin, A.W., “Physical and mechanical properties of thermally modified wood from E. Grandis”, European Journal of Wood and Wood Products, 70:4 (2012) 453-460. DOI: 10.1007/s00107-011-0568-5.
  • [7] Almeida, G., Brito, J. O., Perre, P., “Changes in wood-water relationship due to heat treatment assessed on micro-samples of three Eucalyptus species”, Holzforschung, 63 (2009) 80-88. DOI: 10.1515/HF.2009.026.
  • [8] Bal, B. C., “A comparative study of the physical properties of thermally treated poplar and plane woods”, BioResources, 8:4 (2013) 6493-6500. DOI: 10.15376/biores.8.4.6493-6500.
  • [9] Kocaefe, D., Poncsak, S., Boluk, Y., “Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen”, BioResources, 3:2 (2008) 517-537. DOI: 10.15376/biores.3.2.517-537.
  • [10] Hirata, S., Ohta, M., Honma, Y., “Hardness distribution on wood surface”, Journal of Wood Science, 47 (2001) 1-7. DOI: 10.1007/BF00776637
  • [11] Jimenez, J.P., Acda, M.N., Razal, R.A., “Physico-Mechanical properties and durability of thermally modified malapapaya [polyscias nodosa (blume) seem.] wood”, Philippine journal of science, 140 (2011) 13-23.
  • [12] Gündüz, G., Korkut, S., Korkut, D. S., “The effects of heat treatment on physical and technological properties and surface roughness of Camiyanı Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood”, Bioresource technology, 99:7 (2008) 2275-2280. DOI: 10.1016/j.biortech.2007.05.015.
  • [13] Korkut, S., Budakçı. M., “Effect of high-temperature treatment on the mechanical properties of rowan (Sorbus aucuparia L.) wood”, Drying Technology, 27:11 (2009) 1240-1247. DOI: 10.1080/07373930903267161.
  • [14] Güneş, M., Altunok, M., “Ön Isıl İşlem Uygulanmış Ahşap Kirişlerin Farklı İklim Şartlarındaki Mekanik Davranışlarının İncelenmesi”, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10:2 (2022) 300-313. DOI: 10.29109/gujsc.1030245.
  • [15] Modes, K. S., Santini, E.J., Vivian, M.A., Haselein, C.R., “Effect of heat treatment on mechanical properties of Pinus taeda and Eucalyptus grandis woods”, Ciência Florestal, 27:1 (2017) 291-302. DOI: https://doi.org/10.5902/1980509826467
  • [16] Uluata, A. R., “Ağaç malzemenin mekanik özelliklerine etki eden faktörler”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 18 (2011) 1-4.
  • [17] ISO 13061-12, 2017. Specifies a method for determining of the static hardness of wood by measuring resistance of a test piece to the penetration of a plunger under gradually increasing load.
  • [18] ASTM D4366-16, 2021. Standard Test Methods for Hardness of Organic Coatings by Pendulum Damping Tests.
There are 18 citations in total.

Details

Primary Language English
Subjects Timber, Pulp and Paper, Materials Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Güneş 0000-0002-1222-7590

Mustafa Altunok 0000-0002-2048-1994

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date October 12, 2023
Acceptance Date November 28, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

IEEE M. Güneş and M. Altunok, “) heat treated with tannin modification under different climatic conditions”., AJEAS, vol. 1, no. 1, pp. 17–27, 2023.

Alpha Journal of Engineering and Applied Sciences © 2023 is licensed under the Creative Commons Attribution 4.0 International License (CC BY)