Research Article
BibTex RIS Cite

NUMERICAL ASSESSMENT OF TUNNEL SHAPE FOR LIQUEFACTION- INDUCED UPLIFT

Year 2024, Volume: 8 Issue: 1, 71 - 82, 30.06.2024
https://doi.org/10.53600/ajesa.1200211

Abstract

The purpose of this study is to evaluate the liquefaction and the settlement or the displacement occurring during an earthquake and causing the damage to the underground structure by uplift displacement. If the soil is saturated, then it’s the soil which mostly susceptible to liquefaction especially those fully saturated soil. Sandy soil is very susceptible soil to liquefaction since its particle size are quite bigger and has irregular shaped, which leads to the existence of air gaps in between the sand particles. Liquefaction usually tends to happen in low lying regions where there's actually water underneath so like a water table underneath the soil which help the water molecules to rise up in the sand and kind of like sit below the surface, but fill some of those air gaps. Now, what happens when an earthquake hits is that the ground is shaking, and these particles are squeezed together and compressed so that the water has to go somewhere. If you imagine these particles are being squeezed together, what happens is the water molecules move upwards and it saturates all of this sand and the water bubbles up to the surface and creates low liquid a liquid Sandy. It's essentially like quicksand.

References

  • EPFL Graph. (n.d.). Retrieved from https://graphsearch.epfl.ch/concept/544776/Soil-liquefaction (Aydingun and Adalier, 2., & al., C. e. (1997). Design Specification of Taiwans Building Code.
  • Aydingun, A. (2003). Numerical analysis of seismically induced liquefaction in earth embankment foundations. Can. Geotech, 753–765.
  • Chou, H. Y. (2001). A study of liquefaction related damages on shield tunnels. Space Technol, 185-198.
  • Japan Society of Civil Engineers. (1993). Reconnaissance Report on the July 16, 1990 Luzon Earthquake . the Philippines.
  • Japanese Society of Soil Mechanics and Foundation Engineering. (1986). Report on the Damage Investigation of the 1983 Nihonkai-Chubu Earthquake. Tohoku Branch.
  • Khoshnoudian. (2002). Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils. Soils Found, 1-8.
  • Koseki, J. M. (1997). Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake. Soils Found, 97-108.
  • Koseki, J. M. (1997). Uplift of Serer manholes during the 1993 Kushiro-oki earthquake. Soil Found, 109-121.
  • Liu, H. S. (2005). Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations. Comput. Geotech.

Sıvılaşma Kaynaklı Yükseltme İçin Tünel Şeklinin Sayısal Değerlendirmesi

Year 2024, Volume: 8 Issue: 1, 71 - 82, 30.06.2024
https://doi.org/10.53600/ajesa.1200211

Abstract

Bu çalışmanın amacı, bir deprem sırasında meydana gelen ve yer altı yapısında meydana gelen sıvılaşmayı ve oturmayı veya yer değiştirmeyi, yukarı hareket deplasmanı ile değerlendirmektir. Zemin doymuşsa, sıvılaşmaya en çok duyarlı olan, özellikle tamamen doymuş olan zemindir. Kumlu zemin, tane boyutunun oldukça büyük olması ve düzensiz şekilli olması nedeniyle sıvılaşmaya çok duyarlıdır ve bu da kum tanecikleri arasında hava boşluklarının oluşmasına neden olur. Sıvılaşma genellikle, altında gerçekten su bulunan alçak bölgelerde meydana gelme eğilimindedir, bu nedenle toprağın altındaki bir su tablası gibi, su moleküllerinin kumda yükselmesine ve yüzeyin altına oturmasına yardımcı olur, ancak bu hava boşluklarının bir kısmını doldurur. Şimdi, bir deprem vurduğunda olan şey, yerin sallanması ve bu parçacıkların birlikte sıkıştırılması ve sıkıştırılması, böylece suyun bir yere gitmesi gerekiyor. Bu parçacıkların birbirine sıkıştırıldığını hayal ederseniz, su molekülleri yukarı doğru hareket eder ve tüm bu kumu doyurur ve su yüzeye kadar kabarır ve düşük sıvı bir sıvı Sandy oluşturur. Esasen bataklık gibidir.

References

  • EPFL Graph. (n.d.). Retrieved from https://graphsearch.epfl.ch/concept/544776/Soil-liquefaction (Aydingun and Adalier, 2., & al., C. e. (1997). Design Specification of Taiwans Building Code.
  • Aydingun, A. (2003). Numerical analysis of seismically induced liquefaction in earth embankment foundations. Can. Geotech, 753–765.
  • Chou, H. Y. (2001). A study of liquefaction related damages on shield tunnels. Space Technol, 185-198.
  • Japan Society of Civil Engineers. (1993). Reconnaissance Report on the July 16, 1990 Luzon Earthquake . the Philippines.
  • Japanese Society of Soil Mechanics and Foundation Engineering. (1986). Report on the Damage Investigation of the 1983 Nihonkai-Chubu Earthquake. Tohoku Branch.
  • Khoshnoudian. (2002). Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils. Soils Found, 1-8.
  • Koseki, J. M. (1997). Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake. Soils Found, 97-108.
  • Koseki, J. M. (1997). Uplift of Serer manholes during the 1993 Kushiro-oki earthquake. Soil Found, 109-121.
  • Liu, H. S. (2005). Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations. Comput. Geotech.
There are 9 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Article
Authors

Sami Bakour 0000-0001-9938-0960

Publication Date June 30, 2024
Submission Date November 6, 2022
Acceptance Date February 26, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Bakour, S. (2024). NUMERICAL ASSESSMENT OF TUNNEL SHAPE FOR LIQUEFACTION- INDUCED UPLIFT. AURUM Journal of Engineering Systems and Architecture, 8(1), 71-82. https://doi.org/10.53600/ajesa.1200211