Research Article
BibTex RIS Cite

Determination of burning and flue gas emission values of greenhouse crop residue briquettes as an alternative fuel

Year 2013, Volume: 26 Issue: 1, 11 - 17, 01.06.2013

Abstract

The purpose of this research is to determine the flue gas emission values of briquettes obtained from tomato, pepper and eggplant crop residues as an alternative fuel. During the experiments, 57 mm diameter and 75 mm length cylindrical briquettes having a 25 mm diameter central hole were used. Briquettes were burned in traditional bucket stoves, commonly used for household heating and cooking, and flue gas emissions (CO, CO2, O2, NOx, SO2 and H2S), flue temperatures and combustion efficiency were measured using a flue gas analyzer. Also, the high calorific values of the briquettes were determined in the scope of the research. At the end of this study, it is found that when the combustion process had a steady-state condition, the flue gas emission values measured during burning of the briquettes in a traditional bucket type stove were very low. The lowest values of CO emissions were 92 ppm, 101 ppm and 94 ppm, average values of NOx emissions were 208 ppm, 235 ppm and 200 ppm, and CO2 emissions approximately varied between 7-9%, 7-10% and 7-9% for tomato, pepper and eggplant crop briquettes, respectively. While tomato crop briquettes had no SO2 emission, SO2 emissions of pepper and eggplant crop briquettes were at insignificant level. During the combustion process, H2S emission for all briquettes was null. While the combustion process had a steady-state condition, the average flue gas temperatures for tomato, pepper and eggplant crop briquettes were 394 ºC, 424 ºC and 407 ºC, respectively, and the average combustion efficiency for all briquettes was 70%. Also, the high calorific values (HHV) of briquettes of tomato, pepper and eggplant crop were 15.74 MJ kg-1, 17.89 MJ kg-1 and 17.76 MJ kg-1, respectively

References

  • Al-Widyan MI, Tashtoush G, Hamasha AM ( 2006) Combustion and emissions of pulverized olive cake in tube furnace. Energy Conversion and Management 47: 1588–1596.
  • Ballesteros I, Negro MJ, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology 130: 496-508.
  • Başçetinçelik A, Karaca C, Öztürk HH, Kaçıra M, Ekinci K (2005) Agricultural biomass potential in Turkey. 9th International Congress on Mechanization and Energy in Agricultre and 27th International Conference of CIRG Section IV, İzmir, Turkey, pp. 195-1
  • Bhattacharya SC, Albina DO, Khaing AM (2002) Effects of selected parameters on performance and emission of biomass-fired cookstoves. Biomass and Bioenergy 23: 387-395.
  • Bhattacharya SC, Salam PA (2002). Low greenhouse gas biomass options for cooking in the developing countries. Biomass and Bioenergy 22: 305-317.
  • Bilgin S, Ertekin C, Kürklü A (2012) Türkiye’deki sera bitkisel biyokütle atık miktarının belirlenmesi. 27. Tarımsal Mekanizasyon Ulusal Kongresi, Samsun, s. 499-508.
  • Bilgin S (2010) Determination of flue gas emission values of cotton and sesame stalk briquettes. Tarım Makinaları Bilim Dergisi 6 (1): 37
  • Dare P, Gifford J, Hooper RJ, Clemens AH, Daminao LF, Gong D, Matheson TW (2001) Combustion performance of biomass residue and purpose grown species. Biomass and Bioenerg 21: 277-287.
  • EC (2005) Biomass Green Energy for Europe, European Communities, Luxembourg.
  • El Saeidy E (2004) Technological fundamentals of briquetting cotton stalks as a Biofuel. Ph.D. Thesis, Humboldt-University of Berlin, Berlin.
  • González JF, González-García CM, Ramiro A, González J, Sabio E, Ganán J, Rodríquez MA (2004) Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass and Bioenergy 27: 145-154.
  • Goswami DY, Kreith F (2007) Global energy system. In: Kreith F, Goswami DY (Eds), Handbook of Energy Efficiency and Renewable Energy. CRC Press, Florida, pp: 1-20.
  • IEA (2003a) Energy balances of non-OECD and OECD countries, 2000-2001. International Energy Agency, Paris.
  • IEA (2003b) Statistics, Renewable information. International Energy Agency, Paris.
  • IEA (2009) World energy Outlook. International Energy Agency, Paris.
  • IEA (2010) World energy outlook, executive summary. International Energy Agency, Paris.
  • IEA (2011) Key world energy statistics. International Energy Agency, Paris.
  • IKHKKY (2005) Isınmadan kaynaklanan hava kirliliğinin kontrolü yönetmeliği. Resmi Gazete: Tarih: 13 Ocak 2005, Sayı:25699.
  • Johansson LS (2002) Characterisation of particle emissions from smallscale biomass combustion. Thesis for the Degree of Licentiate of Engineering, Chalmers University of Technology, Göteborg.
  • Koyuncu T, Pınar Y (2007) The emissinons from a space-heating biomass stove. Biomass and Bioenergy 31: 73-79.
  • Lighty SL, Veranth JM, Sarofim AF (2000) Combustion aerosols: Factors governing their size and composition and implication to human health. Journal of the Air and Waste Management Association 50: 1565-1618.
  • Miah Md.D, Al Rashid, H, Shin MY (2009) Wood fuel use in the traditional cooking stoves in the rural floodplain areas of Bangladesh: A socio-environmential perspective. Biomass and Bioenergy 33: 70-78.
  • Ndiema CKW, Mpendazoe FM, Williams A (1998) Emission of pollutants from a biomass stove. Energy Conversion and Management 39: 1357-1367.
  • Nendel K, Clauß B, Böttger U (1998) The preconditioning of biomass by briquetting technology and the influence on the combustion behaviour. The 10 th
  • European Conference on Biomass for Energy and Industry, Würzburg, Germany. Permchart W, Kouprianov VI (2004) Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresource Technology 92: 83-91.
  • Smith KR, Uma R, Kishore VVN, Zhang J, Joshi V, Khalil MAK (2000) Greenhouse implications of household stoves: An analysis for India. Annual Review of Energy and the Environment 25: 7417
  • Spliethoff H, Hein KRG (1998) Effect of co-combustion of biomass on emissions in pulverized fuel furnaces. Fuel Processing Technology 54: 189-205.
  • Topal H, Atımyay A, Durmaz A (2002) Temiz enerji eldesi için akışkan yatakta prina yakılması ve emisyon karakteristiklerinin incelenmesi. IV. Ulusal Temiz Enerji Sempozyumu Bildiri Kitabı, İstanbul, s. 833-840.
  • Topal H, Yüksel S, Kaynak B, Durmaz A, Atımsay AT (2003) Enerji üretiminde biyokütle yakılması uygulamaları. I. Ege Enerji Sempozyumu ve Sergisi, Denizli, s. 173-176.
  • Tremeer GB, Jawurek HH (1996) Comparsion of five rural, woodburning cooking devices: Efficiencies and emissions. Biomass and Bioenergy 11(5): 419-430.
  • Ünal H, Alibaş K (2002) Buğday ve ayçiçeği saplarının yakılması için gerekli yanma havası ve baca gazı miktarlarının belirlenmesi. IV. Ulusal Temiz Enerji Sempozyumu, İstanbul, s. 841-851.

Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi

Year 2013, Volume: 26 Issue: 1, 11 - 17, 01.06.2013

Abstract

Bu araştırmada, alternatif yakıt olarak domates, biber ve patlıcan bitkisi atıklarından elde edilen briketlerin baca gazı emisyon değerlerinin belirlenmesi amaçlanmıştır. Denemelerde ortalama 57 mm çapında, ve 75 mm uzunluğunda ve 25 mm çapında merkez delikli silindirik briketler kullanılmıştır. Briketler evsel ısıtmalarda yaygın olarak kullanılan geleneksel kovalı tip sobada yakılmıştır. Baca gazı emisyonları ile ilgili olarak CO, CO, O , NO x , SO ve H S değerleri ile baca gazı sıcaklığı ve yanma verimi bir baca gazı analizörü kullanılarak ölçülmüştür. Ayrıca çalışmada, briketlerin ısıl değerleri belirlenmiştir. Briketlerin kovalı tip bir sobada yakılması sonucu ölçülen baca gazı emisyon değerleri yanma işlemi kararlı durumda iken düşük bulunmuştur. Kararlı durum süresince domates, biber ve patlıcan bitkisi briketleri için en düşük CO emisyonu sırası ile 92 ppm, 101 ppm ve 94 ppm, ortalama NOx emisyonu 208 ppm, 235 ppm ve 200 ppm olmuş ve CO emisyonu da yaklaşık olarak %7-9, %7-10 ve %7-9 arasında değişmiştir. Domates bitkisi briketleri SO emisyonları meydana getirmezken, biber ve patlıcan bitkisi briketleri ise önemsiz düzeyde meydana getirmişlerdir. Yanma işlemi süresince tüm briketler HS emisyonu meydana getirmemişlerdir. Yanma işlemi kararlı durumdayken baca gazı sıcaklığı domates, biber ve patlıcan bitkisi briketleri için sırası ile ortalama 394 ºC, 424 ºC ve 407 ºC ve yanma verimi tüm briketler için ortalama %70 olarak belirlenmiştir. Ayrıca domates, biber ve patlıcan bitkisi briketlerinin üst ısıl değerleri ise sırası ile 15.74 MJ kg, 17.89 MJ kg ve 17.76 MJ kg olarak belirlenmiştir.

References

  • Al-Widyan MI, Tashtoush G, Hamasha AM ( 2006) Combustion and emissions of pulverized olive cake in tube furnace. Energy Conversion and Management 47: 1588–1596.
  • Ballesteros I, Negro MJ, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology 130: 496-508.
  • Başçetinçelik A, Karaca C, Öztürk HH, Kaçıra M, Ekinci K (2005) Agricultural biomass potential in Turkey. 9th International Congress on Mechanization and Energy in Agricultre and 27th International Conference of CIRG Section IV, İzmir, Turkey, pp. 195-1
  • Bhattacharya SC, Albina DO, Khaing AM (2002) Effects of selected parameters on performance and emission of biomass-fired cookstoves. Biomass and Bioenergy 23: 387-395.
  • Bhattacharya SC, Salam PA (2002). Low greenhouse gas biomass options for cooking in the developing countries. Biomass and Bioenergy 22: 305-317.
  • Bilgin S, Ertekin C, Kürklü A (2012) Türkiye’deki sera bitkisel biyokütle atık miktarının belirlenmesi. 27. Tarımsal Mekanizasyon Ulusal Kongresi, Samsun, s. 499-508.
  • Bilgin S (2010) Determination of flue gas emission values of cotton and sesame stalk briquettes. Tarım Makinaları Bilim Dergisi 6 (1): 37
  • Dare P, Gifford J, Hooper RJ, Clemens AH, Daminao LF, Gong D, Matheson TW (2001) Combustion performance of biomass residue and purpose grown species. Biomass and Bioenerg 21: 277-287.
  • EC (2005) Biomass Green Energy for Europe, European Communities, Luxembourg.
  • El Saeidy E (2004) Technological fundamentals of briquetting cotton stalks as a Biofuel. Ph.D. Thesis, Humboldt-University of Berlin, Berlin.
  • González JF, González-García CM, Ramiro A, González J, Sabio E, Ganán J, Rodríquez MA (2004) Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass and Bioenergy 27: 145-154.
  • Goswami DY, Kreith F (2007) Global energy system. In: Kreith F, Goswami DY (Eds), Handbook of Energy Efficiency and Renewable Energy. CRC Press, Florida, pp: 1-20.
  • IEA (2003a) Energy balances of non-OECD and OECD countries, 2000-2001. International Energy Agency, Paris.
  • IEA (2003b) Statistics, Renewable information. International Energy Agency, Paris.
  • IEA (2009) World energy Outlook. International Energy Agency, Paris.
  • IEA (2010) World energy outlook, executive summary. International Energy Agency, Paris.
  • IEA (2011) Key world energy statistics. International Energy Agency, Paris.
  • IKHKKY (2005) Isınmadan kaynaklanan hava kirliliğinin kontrolü yönetmeliği. Resmi Gazete: Tarih: 13 Ocak 2005, Sayı:25699.
  • Johansson LS (2002) Characterisation of particle emissions from smallscale biomass combustion. Thesis for the Degree of Licentiate of Engineering, Chalmers University of Technology, Göteborg.
  • Koyuncu T, Pınar Y (2007) The emissinons from a space-heating biomass stove. Biomass and Bioenergy 31: 73-79.
  • Lighty SL, Veranth JM, Sarofim AF (2000) Combustion aerosols: Factors governing their size and composition and implication to human health. Journal of the Air and Waste Management Association 50: 1565-1618.
  • Miah Md.D, Al Rashid, H, Shin MY (2009) Wood fuel use in the traditional cooking stoves in the rural floodplain areas of Bangladesh: A socio-environmential perspective. Biomass and Bioenergy 33: 70-78.
  • Ndiema CKW, Mpendazoe FM, Williams A (1998) Emission of pollutants from a biomass stove. Energy Conversion and Management 39: 1357-1367.
  • Nendel K, Clauß B, Böttger U (1998) The preconditioning of biomass by briquetting technology and the influence on the combustion behaviour. The 10 th
  • European Conference on Biomass for Energy and Industry, Würzburg, Germany. Permchart W, Kouprianov VI (2004) Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresource Technology 92: 83-91.
  • Smith KR, Uma R, Kishore VVN, Zhang J, Joshi V, Khalil MAK (2000) Greenhouse implications of household stoves: An analysis for India. Annual Review of Energy and the Environment 25: 7417
  • Spliethoff H, Hein KRG (1998) Effect of co-combustion of biomass on emissions in pulverized fuel furnaces. Fuel Processing Technology 54: 189-205.
  • Topal H, Atımyay A, Durmaz A (2002) Temiz enerji eldesi için akışkan yatakta prina yakılması ve emisyon karakteristiklerinin incelenmesi. IV. Ulusal Temiz Enerji Sempozyumu Bildiri Kitabı, İstanbul, s. 833-840.
  • Topal H, Yüksel S, Kaynak B, Durmaz A, Atımsay AT (2003) Enerji üretiminde biyokütle yakılması uygulamaları. I. Ege Enerji Sempozyumu ve Sergisi, Denizli, s. 173-176.
  • Tremeer GB, Jawurek HH (1996) Comparsion of five rural, woodburning cooking devices: Efficiencies and emissions. Biomass and Bioenergy 11(5): 419-430.
  • Ünal H, Alibaş K (2002) Buğday ve ayçiçeği saplarının yakılması için gerekli yanma havası ve baca gazı miktarlarının belirlenmesi. IV. Ulusal Temiz Enerji Sempozyumu, İstanbul, s. 841-851.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

S. Bilgin This is me

C. Ertekin This is me

A. Kürklü This is me

Publication Date June 1, 2013
Published in Issue Year 2013 Volume: 26 Issue: 1

Cite

APA Bilgin, S., Ertekin, C., & Kürklü, A. (2013). Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture, 26(1), 11-17.
AMA Bilgin S, Ertekin C, Kürklü A. Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture. June 2013;26(1):11-17.
Chicago Bilgin, S., C. Ertekin, and A. Kürklü. “Alternatif yakıt Olarak Sera Bitki atığı Briketlerinin yakılması Ve Baca Gazı Emisyon değerlerinin Belirlenmesi”. Akdeniz University Journal of the Faculty of Agriculture 26, no. 1 (June 2013): 11-17.
EndNote Bilgin S, Ertekin C, Kürklü A (June 1, 2013) Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture 26 1 11–17.
IEEE S. Bilgin, C. Ertekin, and A. Kürklü, “Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi”, Akdeniz University Journal of the Faculty of Agriculture, vol. 26, no. 1, pp. 11–17, 2013.
ISNAD Bilgin, S. et al. “Alternatif yakıt Olarak Sera Bitki atığı Briketlerinin yakılması Ve Baca Gazı Emisyon değerlerinin Belirlenmesi”. Akdeniz University Journal of the Faculty of Agriculture 26/1 (June 2013), 11-17.
JAMA Bilgin S, Ertekin C, Kürklü A. Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture. 2013;26:11–17.
MLA Bilgin, S. et al. “Alternatif yakıt Olarak Sera Bitki atığı Briketlerinin yakılması Ve Baca Gazı Emisyon değerlerinin Belirlenmesi”. Akdeniz University Journal of the Faculty of Agriculture, vol. 26, no. 1, 2013, pp. 11-17.
Vancouver Bilgin S, Ertekin C, Kürklü A. Alternatif yakıt olarak sera bitki atığı briketlerinin yakılması ve baca gazı emisyon değerlerinin belirlenmesi. Akdeniz University Journal of the Faculty of Agriculture. 2013;26(1):11-7.