BibTex RIS Cite

Application of Herpesvirus Saimiri as an Alternative Gene Therapy Vector

Year 2016, Volume: 25 Issue: 1, 41 - 51, 31.03.2016

Abstract

Herpesvirus saimiri is the prototype rhadinovirus and is closely related to human Kaposi’s sarcoma-associated herpesvirus. Herpesvirus saimiri strains of subgroup C transduce a broad spectrum of cancer cells and primary cells including human T lymphocytes very efficiently and enable stable transgene expression. Herpesvirus saimiri as a gene therapy vector is favorable because of its large packaging capacity, extensive cell tropism, and long-termed persistence as non-integrating episomes and thus exhibits numerous advantages over commonly used viral vectors. In order to use Herpesvirus saimiri as a secure and versatile gene therapy vehicle, it should be easily manipulated and modified. The recent advances in molecular cloning of large genomic fragments such as virus genomes as bacterial artificial chromosomes facilitated the functional studies and manipulation of herpesviruses using the recombination system of bacteria. Among these, red-recombination based “en passant” mutagenesis method enables seamless genome modification such as deletion, insertion and point mutation very easily and efficiently.

References

  • Davison AJ. Overview of Classification. In Human Herpesviruses (Eds A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, R Whitley, K Yamanishi):3-9. Cambridge University Press, 2007.
  • Longnecker R, Neipel F. Introduction of the human gammaherpesviruses. In Human Herpesviruses (Eds A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, R Whitley, K Yamanishi):341-59. Cambridge University Press, 2007.
  • Kieff ED, Rickenson A. Epstein-Barr virus and its replication. In: Fields Virology, 5th ed (Eds BN Fileds, DM Knipe, PM Howley):2603-54. Lippincott Williams and Wilkins, Philadelphia, 2007.
  • Fickenscher H, Fleckenstein B. Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci. 2001;356:545-67.
  • Fleckenstein B, Ensser A. Gammaherpesviruses of New World primates. In Human Herpesviruses (Eds A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, R Whitley, K Yamanishi):1076-92. Cambridge University Press, 2007.
  • Melendez LV, Hunt RD, Daniel MD, Garcia FG, Fraser CE. Herpesvirus saimiri. Experimentally induced malignant lymphoma in primates. Lab Anim Care. 1969;19:378-86.
  • Wright J, Falk LA, Collins D, Deinhardt F. Mononuclear cell fraction carrying herpesvirus saimiri in persistently infected squirrel monkeys. J Natl Cancer Inst. 1976;57:959-62.
  • Ensser A, Fleckenstein B. T-cell transformation and oncogenesis by gamma2-herpesviruses. Adv Cancer Res. 2005;93:91-128.
  • Ensser A, Thurau M, Wittmann S, Fickenscher H. The genome of herpes-virus saimiri C488 which is capable of transforming human T cells. Virology. 2003;314: 471-87.
  • Desrosiers RC, Falk LA. Herpesvirus saimiri strain variability. J Virol. 1982;43:352-6.
  • Simmer B, Alt M, Buckreus I, Berthold S, Fleckenstein B, Platzer E et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. J Gen Virol. 1991;72: 1953-8.
  • Biesinger B, Müller-Fleckenstein I, Simmer B, Lang G, Wittmann S, Platzer E, et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci USA. 1992; 89: 3116-9.
  • Alberter B, Ensser A. Histone modification pattern of the T-cellular herpesvirus saimiri genome in latency. J Virol. 2007;81:2524-30.
  • Stedman W, Deng Z, Lu F, Lieberman PM. ORC, MCM, and histone hyper-acetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J Virol. 2004;78:12566-75.
  • Verma SC, Robertson ES. ORF73 of herpesvirus saimiri strain C488 tethers the viral genome to metaphase chromosomes and binds to cis-acting DNA sequences in the terminal repeats. J Virol. 2003; 77:12494-506.
  • Fickenscher H, Biesinger B, Knappe A, Wittmann S, Fleckenstein B. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes. J Virol. 1996;70:6012-9.
  • Frolova-Jones EA, Ensser A, Stevenson AJ, Kinsey SE, Meredith DM. Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri- based vectors. J Hematother. Stem Cell Res. 2000;9:573-81.
  • Hiller C, Tamgüney G, Stolte N, Mätz-Rensing K, Lorenzen D, Hör S et al. Herpesvirus saimiri pathogenicity enhanced by thymidine kinase of herpes simplex virus. Virology. 2000;278: 445-55.
  • Hiller C, Wittmann S, Slavin S, Fickenscher H. Functional long-term thymidine kinase suicide gene expression in human T cells using a herpesvirus saimiri vector. Gene Ther. 2000;7:664-74.
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7:33–40.
  • Salem ML, Gadalla KE, Fielding BC, Thorne SH. Gene therapy and virus-based cancer vaccine. In Cancer Immunology, Edition: Bench to Bedside Immunotherapy of Cancers, Chapter: Gene Therapy and Virus-Based Cancer Vaccines, (Ed N Resaei):131-50. Springer Berlin Heidelberg, 2014.
  • Kaiser J. Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science. 2003;299:495.
  • Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003;3:477–88.
  • Hacein-Bey-Abina S, von Kalle C, Schmidt M,Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003; 348:255–6.
  • Lee YB, Glover CP, Cosgrave AS, Bienemann A, Uney JB. Optimizing regulatable gene expression using adenoviral vectors. Exp Physiol. 2005; 90: 33-7.
  • Schmeisser F, Weir JP. Cloning of replication-incompetent herpes simplex viruses as bacterial artificial chromosomes to facilitate development of vectors for gene deli-very into differentiated neurons. Hum Gene Ther. 2006;17:93-104.
  • Toptan T, Ensser A, Fickenscher H. Rhadinovirus vector-derived human telomerase reverse transcriptase expression in primary T cells. Gene Ther. 2010;17:653–61.
  • Stevenson AJ, Clarke D, Meredith DM, Kinsey SE, Whitehouse A, Bonifer C. Herpesvirus saimiri- based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Ther. 2000;7:464-71.
  • Smith PG, Coletta PL, Markham AF, Whitehouse A. In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Ther. 2001;8:1762–9.
  • Smith PG, Oakley F, Fernandez M, Mann DA, Lemoine NR, Whitehouse A. Herpesvirus saimiri- based vector biodistribution using noninvasive optical imaging. Gene Ther. 2005;12:1465–76.
  • Wieser C, Stumpf D, Grillhosl C, Lengenfelder D, Gay S, Fleckenstein B, et al. Regulated and constitutive expression of anti-inflammatory cytokines by nontransforming herpesvirus saimiri vectors. Gene Ther. 2005;12:395–406.
  • Turrell SJ, Macnab SA, Rose A, Melcher AA, Whitehouse A. A herpesvirus saimiri-based vector expressing TRAIL induces cell death in human carcinoma cell lines and multicellular spheroid cultures. Int J Oncol. 2012; 40:2081–9.
  • Brown HF, Unger C, Whitehouse A. Potential of herpesvirus saimiri-based vectors to reprogram a somatic Ewing's sarcoma family tumor cell line. J Virol. 2013;87:7127–39.
  • Wagner M, Ruzsics Z, Koszinowski UH. Herpesvirus genetics has come of age. Trends Microbiol. 2002;10:318-24.
  • Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA. 2000; 7:5516-21.
  • Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci USA. 2002;99:12415-420.
  • Adler H, Messerle M, Koszinowski UH. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol. 2003;13:111-21.
  • Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998; 20:123-128.
  • Court D, Sawitzke JA, Thomason LC. Genetic engineering using homolo-gous recombination. Annu Rev Genet. 2002; 36:361-88.
  • Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4:206-23.
  • Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 2007;421:171-99.
  • Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques. 2006;40:191-7.
  • Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30.
  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005; 33:e36.
  • Wussow F, Spieckermann T, Brunnemann A, Hüske L, Toptan T, Fickenscher H. Bacterial genetics of large mammalian DNA viruses: bacterial artificial chromosomes as a prerequisite for efficiently studying virus DNA replication and functions. In DNA replication: current advances (Ed H Seligmann):669-94. Intech, Rijeka, Croatia.
  • Colleaux L, D'Auriol L, Galibert F, Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA. 1988;85:6022-6.
  • Correspondence Address / Yazışma Adresi Tuna Toptan
  • University of Pittsburgh Cancer Institute
  • Cancer Virology Program Pittsburgh, PA, USA
  • e-mail: tut3@pitt.edu
  • Geliş tarihi/ Received: 11.05.2015
  • Kabul tarihi/Accepted: 02.06.2015

Herpesvirüs Saimiri’nin Alternatif Gen Terapi Vektörü Olarak Kullanımı

Year 2016, Volume: 25 Issue: 1, 41 - 51, 31.03.2016

Abstract

Herpesvirüs saimiri, gama herpesvirüs ailesine ait olan radinovirüslerin prototipidir ve insan Kaposi Sarkom-ilişkili herpesvirüs ile benzerlik gösterir. Herpesvirüs saimiri’nin C türü insan T lenfositleri olmak üzere birçok normal ve kanser hücre tipini yüksek verimlilikte transdükte etme ve bu hücrelerde sabit transgen ekspresyonu sağlamaktadır. Herpesvirüs saimiri, büyük transgen taşıma kapasitesi, geniş hücre tropizmi ve konak genomuna entegre olmadan epizomal olarak persiste olabilmesi özelliklerinden dolayı genterapisi için sıkça kullanılan viral vektörlere karşı üstünlük gösterir. Herpesvirüs saimiri’nin gen terapi vektörü olarak kullanımını sağlamak için güvenilir ve kolay bir şekilde manipüle edilebilmesi gerekir. Son 20 yılda birçok herpesvirüs  genomu bakteri yapay kromozomları olarak klonlanmıştır. Bu sayede viral genomlar, bakterilerin rekombinasyon sistemi kullanılarak modifiye edilebilmektedir. Bu yöntemlerden red-rekombinasyon temelli “en passant” mutagenez yöntemiyle herpesvirüslerde genomik delesyon, insersiyon ve nokta mutasyonlar geride hiçbir iz bırakmadan kolayca ve verimli bir şekilde yapılabilmektedir.

References

  • Davison AJ. Overview of Classification. In Human Herpesviruses (Eds A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, R Whitley, K Yamanishi):3-9. Cambridge University Press, 2007.
  • Longnecker R, Neipel F. Introduction of the human gammaherpesviruses. In Human Herpesviruses (Eds A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, R Whitley, K Yamanishi):341-59. Cambridge University Press, 2007.
  • Kieff ED, Rickenson A. Epstein-Barr virus and its replication. In: Fields Virology, 5th ed (Eds BN Fileds, DM Knipe, PM Howley):2603-54. Lippincott Williams and Wilkins, Philadelphia, 2007.
  • Fickenscher H, Fleckenstein B. Herpesvirus saimiri. Philos Trans R Soc Lond B Biol Sci. 2001;356:545-67.
  • Fleckenstein B, Ensser A. Gammaherpesviruses of New World primates. In Human Herpesviruses (Eds A Arvin, G Campadelli-Fiume, E Mocarski, PS Moore, B Roizman, R Whitley, K Yamanishi):1076-92. Cambridge University Press, 2007.
  • Melendez LV, Hunt RD, Daniel MD, Garcia FG, Fraser CE. Herpesvirus saimiri. Experimentally induced malignant lymphoma in primates. Lab Anim Care. 1969;19:378-86.
  • Wright J, Falk LA, Collins D, Deinhardt F. Mononuclear cell fraction carrying herpesvirus saimiri in persistently infected squirrel monkeys. J Natl Cancer Inst. 1976;57:959-62.
  • Ensser A, Fleckenstein B. T-cell transformation and oncogenesis by gamma2-herpesviruses. Adv Cancer Res. 2005;93:91-128.
  • Ensser A, Thurau M, Wittmann S, Fickenscher H. The genome of herpes-virus saimiri C488 which is capable of transforming human T cells. Virology. 2003;314: 471-87.
  • Desrosiers RC, Falk LA. Herpesvirus saimiri strain variability. J Virol. 1982;43:352-6.
  • Simmer B, Alt M, Buckreus I, Berthold S, Fleckenstein B, Platzer E et al. Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. J Gen Virol. 1991;72: 1953-8.
  • Biesinger B, Müller-Fleckenstein I, Simmer B, Lang G, Wittmann S, Platzer E, et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci USA. 1992; 89: 3116-9.
  • Alberter B, Ensser A. Histone modification pattern of the T-cellular herpesvirus saimiri genome in latency. J Virol. 2007;81:2524-30.
  • Stedman W, Deng Z, Lu F, Lieberman PM. ORC, MCM, and histone hyper-acetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J Virol. 2004;78:12566-75.
  • Verma SC, Robertson ES. ORF73 of herpesvirus saimiri strain C488 tethers the viral genome to metaphase chromosomes and binds to cis-acting DNA sequences in the terminal repeats. J Virol. 2003; 77:12494-506.
  • Fickenscher H, Biesinger B, Knappe A, Wittmann S, Fleckenstein B. Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes. J Virol. 1996;70:6012-9.
  • Frolova-Jones EA, Ensser A, Stevenson AJ, Kinsey SE, Meredith DM. Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri- based vectors. J Hematother. Stem Cell Res. 2000;9:573-81.
  • Hiller C, Tamgüney G, Stolte N, Mätz-Rensing K, Lorenzen D, Hör S et al. Herpesvirus saimiri pathogenicity enhanced by thymidine kinase of herpes simplex virus. Virology. 2000;278: 445-55.
  • Hiller C, Wittmann S, Slavin S, Fickenscher H. Functional long-term thymidine kinase suicide gene expression in human T cells using a herpesvirus saimiri vector. Gene Ther. 2000;7:664-74.
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7:33–40.
  • Salem ML, Gadalla KE, Fielding BC, Thorne SH. Gene therapy and virus-based cancer vaccine. In Cancer Immunology, Edition: Bench to Bedside Immunotherapy of Cancers, Chapter: Gene Therapy and Virus-Based Cancer Vaccines, (Ed N Resaei):131-50. Springer Berlin Heidelberg, 2014.
  • Kaiser J. Gene therapy. Seeking the cause of induced leukemias in X-SCID trial. Science. 2003;299:495.
  • Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer. 2003;3:477–88.
  • Hacein-Bey-Abina S, von Kalle C, Schmidt M,Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003; 348:255–6.
  • Lee YB, Glover CP, Cosgrave AS, Bienemann A, Uney JB. Optimizing regulatable gene expression using adenoviral vectors. Exp Physiol. 2005; 90: 33-7.
  • Schmeisser F, Weir JP. Cloning of replication-incompetent herpes simplex viruses as bacterial artificial chromosomes to facilitate development of vectors for gene deli-very into differentiated neurons. Hum Gene Ther. 2006;17:93-104.
  • Toptan T, Ensser A, Fickenscher H. Rhadinovirus vector-derived human telomerase reverse transcriptase expression in primary T cells. Gene Ther. 2010;17:653–61.
  • Stevenson AJ, Clarke D, Meredith DM, Kinsey SE, Whitehouse A, Bonifer C. Herpesvirus saimiri- based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Ther. 2000;7:464-71.
  • Smith PG, Coletta PL, Markham AF, Whitehouse A. In vivo episomal maintenance of a herpesvirus saimiri-based gene delivery vector. Gene Ther. 2001;8:1762–9.
  • Smith PG, Oakley F, Fernandez M, Mann DA, Lemoine NR, Whitehouse A. Herpesvirus saimiri- based vector biodistribution using noninvasive optical imaging. Gene Ther. 2005;12:1465–76.
  • Wieser C, Stumpf D, Grillhosl C, Lengenfelder D, Gay S, Fleckenstein B, et al. Regulated and constitutive expression of anti-inflammatory cytokines by nontransforming herpesvirus saimiri vectors. Gene Ther. 2005;12:395–406.
  • Turrell SJ, Macnab SA, Rose A, Melcher AA, Whitehouse A. A herpesvirus saimiri-based vector expressing TRAIL induces cell death in human carcinoma cell lines and multicellular spheroid cultures. Int J Oncol. 2012; 40:2081–9.
  • Brown HF, Unger C, Whitehouse A. Potential of herpesvirus saimiri-based vectors to reprogram a somatic Ewing's sarcoma family tumor cell line. J Virol. 2013;87:7127–39.
  • Wagner M, Ruzsics Z, Koszinowski UH. Herpesvirus genetics has come of age. Trends Microbiol. 2002;10:318-24.
  • Almazan F, Gonzalez JM, Penzes Z, Izeta A, Calvo E, Plana-Duran J et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA. 2000; 7:5516-21.
  • Domi A, Moss B. Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci USA. 2002;99:12415-420.
  • Adler H, Messerle M, Koszinowski UH. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol. 2003;13:111-21.
  • Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998; 20:123-128.
  • Court D, Sawitzke JA, Thomason LC. Genetic engineering using homolo-gous recombination. Annu Rev Genet. 2002; 36:361-88.
  • Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc. 2009;4:206-23.
  • Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol. 2007;421:171-99.
  • Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques. 2006;40:191-7.
  • Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30.
  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005; 33:e36.
  • Wussow F, Spieckermann T, Brunnemann A, Hüske L, Toptan T, Fickenscher H. Bacterial genetics of large mammalian DNA viruses: bacterial artificial chromosomes as a prerequisite for efficiently studying virus DNA replication and functions. In DNA replication: current advances (Ed H Seligmann):669-94. Intech, Rijeka, Croatia.
  • Colleaux L, D'Auriol L, Galibert F, Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci USA. 1988;85:6022-6.
  • Correspondence Address / Yazışma Adresi Tuna Toptan
  • University of Pittsburgh Cancer Institute
  • Cancer Virology Program Pittsburgh, PA, USA
  • e-mail: tut3@pitt.edu
  • Geliş tarihi/ Received: 11.05.2015
  • Kabul tarihi/Accepted: 02.06.2015
There are 52 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Tuna Toptan This is me

Publication Date March 31, 2016
Published in Issue Year 2016 Volume: 25 Issue: 1

Cite

AMA Toptan T. Application of Herpesvirus Saimiri as an Alternative Gene Therapy Vector. aktd. February 2016;25(1):41-51. doi:10.17827/aktd.71668