Research Article
BibTex RIS Cite

Dar Hız Kesici Tümsek ve Geniş Hız Kesici Tümsek Geçişlerinde Maruz Kalınan Titreşim Seviyeleri

Year 2022, , 332 - 341, 30.04.2022
https://doi.org/10.35414/akufemubid.1031891

Abstract

Trafik işletiminde aşırı hızın yarattığı olumsuz etkileri ortadan kaldırmaya yönelik kullanılan yöntemlerin tümü hız yönetimi olarak isimlendirilmektedir. Çalışmada, hız yönetiminin önemli araçlarından olan hız kesici tümsekler (HKT), üzerlerinden geçişlerde sürücü ve yolculara sağladığı konforsuzluk açısından değerlendirilmiştir. Değerlendirmelerde, 5 cm ve 10 cm yüksekliklerdeki iki adet dar tip HKT ve iki adet geniş tip HKT incelenmiştir. 20, 30, 40 ve 50 km/sa sürüş hızlarında yolcu otomobili türü taşıtlar ile HKT’ler üzerinden geçilerek sürücülerin maruz kaldığı Tüm Vücut Titreşimi (TVT) değerleri okunmuş ve ISO 2631-1 standardına göre konforsuzluk seviyeleri değerlendirilmiştir. Titreşim verileri, maruz kalınan titreşimin ortalama etkisini yansıttığı kabul edilen aw parametresi ile anlık şok değerlerini daha yüksek hassasiyetle gösterebildiği kabul edilen MTVV parametresi kullanılarak değerlendirilmiştir. Sonuçlar, standardın önerdiği konfor eşiklerini dikkate alarak grafikler yardımıyla yorumlanmıştır. Yalnızca sınırlı sayıda araştırmanın bulunduğu bu konuda literatüre katkı sağlanmıştır.

References

  • Aghazadeh, B. S., K. Saeedi, and M. R. H. Yazdi. 28-30 August 2006. Simulation of ride quality of vehicles crossing road humps. Paper read at Proceeding of the International Conference on Modeling and Simulation, at Konya, Turkey.
  • Ansari Ardeh, H., M. Shariatpanahi, and M. Nikkhah Bahrami. 2008. Multiobjective shape optimization of speed humps. Structural and Multidisciplinary Optimization, 37, 2, 203-214.
  • Antić, B., D. Pešić, M. Vujanić, and K. Lipovac. 2013. The influence of speed bumps heights to the decrease of the vehicle speed – Belgrade experience. Safety Science, 57, 303-312.
  • ASTM. 2007. Standard Test Method for Measurement of Vehicular Response to Traveled Surface Roughness. In ASTM E 1082-90. West Conshohocken, PA: ASTM International.
  • ASTM. 2008. Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements. In ASTM E 1926-08. West Conshohocken, PA: ASTM International.
  • ASTM. 2009. Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer Established Inertial Profiling Reference. In ASTM E 950. West Conshohocken, PA: ASTM International.
  • Bjarnason, S. 2004. Round top and flat top humps: the influence of design on the effects. Master of Science Thesis, Department of Technology and Society, Lund Institute and Technology, Lund, Sweden, 144.
  • Bovenzi, M. 2005. Health effects of mechanical vibration. G Ital Med Lav Ergon, 27, 1, 58-64.
  • Chadda, H. S., and C. S. E. 1985. Speed (Road) Bumps: Issues and Opinions. Journal of Transportation Engineering, 111, 4, 410-418.
  • Cottrell, W. D., N. Kim, P. T. Martin, and H. J. Perrin, Jr. 2006. Effectiveness of traffic management in Salt Lake City, Utah. J Safety Res, 37, 1, 27-41.
  • Eger, T., J. Stevenson, P. É. Boileau, and A. Salmoni. 2008. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 1—Analysis of whole-body vibration exposure using ISO 2631-1 and ISO-2631-5 standards. International Journal of Industrial Ergonomics 38, 9, 726-738.
  • Fwa, T. F., and C. Y. Liaw. 1992. Rational approach for geometric design of speed-control road humps. Transportation Research Record, 1356, 66-72.
  • Gedik, A., E. Bilgin, A. H. Lav, and R. Artan. 2019. An investigation into the effect of parabolic speed hump profiles on ride comfort and driving safety under variable vehicle speeds: A campus experience. Sustainable Cities and Society, 45, 413-421.
  • Griffin, M. J. 2007. Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 45, 7, 679-698.
  • Hodge, A. R. 1993. Speed Control Humps. In Project Report 32. Crowthorne, Berkshire, England: Transportation Research Laboratory.
  • ISO. 1997. Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement. In ISO 2631-1. Geneva, Switzerland: ISO.
  • Kanjanavapastit, A., and A. Thitinaruemit. 2013. Estimation of a Speed Hump Profile Using Quarter Car Model. Procedia - Social and Behavioral Sciences, 88, 265-273.
  • Khorshid, E., and M. Alfares. 2004. A numerical study on the optimal geometric design of speed control humps. Engineering Optimization, 36, 1, 77-100.
  • Khorshid, E., F. Alkalby, and H. Kamal. 2007. Measurement of whole-body vibration exposure from speed control humps. Journal of Sound and Vibration, 304, 3, 640-659.
  • Kırbaş, U., and M. Karaşahin. 2018. Comparison of Speed Control Bumps and Humps according to Whole-Body Vibration Exposure. Journal of Transportation Engineering, Part A: Systems, 144, 9, 04018054.
  • Mak, K. K. 1986. A further note on undulation as a speed control device. Transportation Research Record, 1069, 13-20.
  • Molan, A. M., and A. A. Kordani. 2014. Optimization of Speed Hump Profiles Based on Vehicle Dynamic Performance Modeling. Journal of Transportation Engineering, 140, 8, 04014035.
  • OECD. 2006. Speed Management. In European Conference of Ministers of Transport. Paris, France, 286.
  • Parkhill, M., R. Sooklall, and G. Bahar. 2007. Updated guidelines for the design and application of speed humps. Paper read at ITE 2007 Annual Meeting and Exhibit, at Pittsburgh, USA.
  • Patel, T., and V. Vasudevan. 2016. Impact of speed humps of bicyclists. Safety Science, 89,38-146.
  • Pau, M. 2002. Speed Bumps May Induce Improper Drivers’ Behavior: Case Study in Italy. Journal of Transportation Engineering, 128, 5, 472-478.
  • Pau, M., and S. Angius. 2001. Do speed bumps really decrease traffic speed? An Italian experience. Accident Analysis and Prevention, 33, 2001, 585-597.
  • Pedersen, N. L. 1998. Shape Optimization of a Vehicle Speed Control Bump. Mechanics of Structures and Machines, 26, 3, 319-342.
  • Salau, T. A. O., A. O. Adeyefa, and S. A. Oke. 2004. Vehicle Speed Control Using Road Bumps. Transport, XIX, 3, 130-136.
  • Watts, G. 1973. Road humps for the control of vehicle speeds. Crowthorne, Berkshire: Transport and Road Research Laboratory.
  • Webster, D. C., and R. E. Layfield. 1998. Traffic Calming - Sinusoidal, 'H' and 'S' Humps. In Report 377. Crowthorne, Berkshire, England: Transport Research Laboratory, 24.
  • WHO. 2015. Global Status Report on Road Safety. Italy: World Health Organization, 340.

Vibration Levels Exposed at Speed Bump and Speed Hump Transitions

Year 2022, , 332 - 341, 30.04.2022
https://doi.org/10.35414/akufemubid.1031891

Abstract

The method used to eliminate the adverse effects of excessive vehicle speed in traffic operation is speed management. In the study, speed control undulations (SCUs), as one of the crucial tools of speed management in urban areas, have been evaluated in terms of their discomfort to the drivers and passengers in the passes over. In the evaluations, two narrow-type SCU (Bump) and two wide-type SCU (Hump) with 5 cm and 10 cm height were investigated. Whole-body vibration (WBV) values of the drivers were recorded by passing over the SCUs with passenger car type vehicles at the speeds of 20, 30, 40 and 50 km/h, and the discomfort levels were evaluated according to ISO 2631-1 standard. Vibration data were evaluated using the aw parameter, which is considered to reflect the average effect of the vibration exposed, and the MTVV parameter, which is considered to be able to display instantaneous shock values with higher accuracy. The results were interpreted with the help of graphics, taking into account the comfort thresholds recommended by the standard. Contribution to the literature has been made on this subject, where there is only a limited number of studies.

References

  • Aghazadeh, B. S., K. Saeedi, and M. R. H. Yazdi. 28-30 August 2006. Simulation of ride quality of vehicles crossing road humps. Paper read at Proceeding of the International Conference on Modeling and Simulation, at Konya, Turkey.
  • Ansari Ardeh, H., M. Shariatpanahi, and M. Nikkhah Bahrami. 2008. Multiobjective shape optimization of speed humps. Structural and Multidisciplinary Optimization, 37, 2, 203-214.
  • Antić, B., D. Pešić, M. Vujanić, and K. Lipovac. 2013. The influence of speed bumps heights to the decrease of the vehicle speed – Belgrade experience. Safety Science, 57, 303-312.
  • ASTM. 2007. Standard Test Method for Measurement of Vehicular Response to Traveled Surface Roughness. In ASTM E 1082-90. West Conshohocken, PA: ASTM International.
  • ASTM. 2008. Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements. In ASTM E 1926-08. West Conshohocken, PA: ASTM International.
  • ASTM. 2009. Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer Established Inertial Profiling Reference. In ASTM E 950. West Conshohocken, PA: ASTM International.
  • Bjarnason, S. 2004. Round top and flat top humps: the influence of design on the effects. Master of Science Thesis, Department of Technology and Society, Lund Institute and Technology, Lund, Sweden, 144.
  • Bovenzi, M. 2005. Health effects of mechanical vibration. G Ital Med Lav Ergon, 27, 1, 58-64.
  • Chadda, H. S., and C. S. E. 1985. Speed (Road) Bumps: Issues and Opinions. Journal of Transportation Engineering, 111, 4, 410-418.
  • Cottrell, W. D., N. Kim, P. T. Martin, and H. J. Perrin, Jr. 2006. Effectiveness of traffic management in Salt Lake City, Utah. J Safety Res, 37, 1, 27-41.
  • Eger, T., J. Stevenson, P. É. Boileau, and A. Salmoni. 2008. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 1—Analysis of whole-body vibration exposure using ISO 2631-1 and ISO-2631-5 standards. International Journal of Industrial Ergonomics 38, 9, 726-738.
  • Fwa, T. F., and C. Y. Liaw. 1992. Rational approach for geometric design of speed-control road humps. Transportation Research Record, 1356, 66-72.
  • Gedik, A., E. Bilgin, A. H. Lav, and R. Artan. 2019. An investigation into the effect of parabolic speed hump profiles on ride comfort and driving safety under variable vehicle speeds: A campus experience. Sustainable Cities and Society, 45, 413-421.
  • Griffin, M. J. 2007. Discomfort from feeling vehicle vibration. Vehicle System Dynamics, 45, 7, 679-698.
  • Hodge, A. R. 1993. Speed Control Humps. In Project Report 32. Crowthorne, Berkshire, England: Transportation Research Laboratory.
  • ISO. 1997. Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement. In ISO 2631-1. Geneva, Switzerland: ISO.
  • Kanjanavapastit, A., and A. Thitinaruemit. 2013. Estimation of a Speed Hump Profile Using Quarter Car Model. Procedia - Social and Behavioral Sciences, 88, 265-273.
  • Khorshid, E., and M. Alfares. 2004. A numerical study on the optimal geometric design of speed control humps. Engineering Optimization, 36, 1, 77-100.
  • Khorshid, E., F. Alkalby, and H. Kamal. 2007. Measurement of whole-body vibration exposure from speed control humps. Journal of Sound and Vibration, 304, 3, 640-659.
  • Kırbaş, U., and M. Karaşahin. 2018. Comparison of Speed Control Bumps and Humps according to Whole-Body Vibration Exposure. Journal of Transportation Engineering, Part A: Systems, 144, 9, 04018054.
  • Mak, K. K. 1986. A further note on undulation as a speed control device. Transportation Research Record, 1069, 13-20.
  • Molan, A. M., and A. A. Kordani. 2014. Optimization of Speed Hump Profiles Based on Vehicle Dynamic Performance Modeling. Journal of Transportation Engineering, 140, 8, 04014035.
  • OECD. 2006. Speed Management. In European Conference of Ministers of Transport. Paris, France, 286.
  • Parkhill, M., R. Sooklall, and G. Bahar. 2007. Updated guidelines for the design and application of speed humps. Paper read at ITE 2007 Annual Meeting and Exhibit, at Pittsburgh, USA.
  • Patel, T., and V. Vasudevan. 2016. Impact of speed humps of bicyclists. Safety Science, 89,38-146.
  • Pau, M. 2002. Speed Bumps May Induce Improper Drivers’ Behavior: Case Study in Italy. Journal of Transportation Engineering, 128, 5, 472-478.
  • Pau, M., and S. Angius. 2001. Do speed bumps really decrease traffic speed? An Italian experience. Accident Analysis and Prevention, 33, 2001, 585-597.
  • Pedersen, N. L. 1998. Shape Optimization of a Vehicle Speed Control Bump. Mechanics of Structures and Machines, 26, 3, 319-342.
  • Salau, T. A. O., A. O. Adeyefa, and S. A. Oke. 2004. Vehicle Speed Control Using Road Bumps. Transport, XIX, 3, 130-136.
  • Watts, G. 1973. Road humps for the control of vehicle speeds. Crowthorne, Berkshire: Transport and Road Research Laboratory.
  • Webster, D. C., and R. E. Layfield. 1998. Traffic Calming - Sinusoidal, 'H' and 'S' Humps. In Report 377. Crowthorne, Berkshire, England: Transport Research Laboratory, 24.
  • WHO. 2015. Global Status Report on Road Safety. Italy: World Health Organization, 340.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ufuk Kırbaş 0000-0002-2389-425X

Publication Date April 30, 2022
Submission Date December 3, 2021
Published in Issue Year 2022

Cite

APA Kırbaş, U. (2022). Vibration Levels Exposed at Speed Bump and Speed Hump Transitions. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(2), 332-341. https://doi.org/10.35414/akufemubid.1031891
AMA Kırbaş U. Vibration Levels Exposed at Speed Bump and Speed Hump Transitions. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. April 2022;22(2):332-341. doi:10.35414/akufemubid.1031891
Chicago Kırbaş, Ufuk. “Vibration Levels Exposed at Speed Bump and Speed Hump Transitions”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 2 (April 2022): 332-41. https://doi.org/10.35414/akufemubid.1031891.
EndNote Kırbaş U (April 1, 2022) Vibration Levels Exposed at Speed Bump and Speed Hump Transitions. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 2 332–341.
IEEE U. Kırbaş, “Vibration Levels Exposed at Speed Bump and Speed Hump Transitions”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 2, pp. 332–341, 2022, doi: 10.35414/akufemubid.1031891.
ISNAD Kırbaş, Ufuk. “Vibration Levels Exposed at Speed Bump and Speed Hump Transitions”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/2 (April 2022), 332-341. https://doi.org/10.35414/akufemubid.1031891.
JAMA Kırbaş U. Vibration Levels Exposed at Speed Bump and Speed Hump Transitions. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:332–341.
MLA Kırbaş, Ufuk. “Vibration Levels Exposed at Speed Bump and Speed Hump Transitions”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 2, 2022, pp. 332-41, doi:10.35414/akufemubid.1031891.
Vancouver Kırbaş U. Vibration Levels Exposed at Speed Bump and Speed Hump Transitions. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(2):332-41.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.