Research Article
BibTex RIS Cite

Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations

Year 2024, , 798 - 810, 20.08.2024
https://doi.org/10.35414/akufemubid.1432554

Abstract

In this study, a novel imidazole and quinoline-based azo compound (MITPDQ) was synthesized, starting from aniline derivative which was used as an intermediate to synthesize nilotinib, which was used in leukemia treatment, characterized, and its structure was elucidated with spectroscopic techniques such as NMR, FTIR, UV, FTIR, and MS. Theoretical calculations using DFT (B3LYP) method and 6-311G (d,p) basis set were done to obtain optimized geometry and spectral data of MITPDQ. Experimental results were compared with theoretical ones and it was observed that they were compatible with each other. Using the optimized geometry of MITPDQ, the molecular docking studies were also conducted with cancer-related proteins. From docking results, the highest docking score was found to be -11.0 kcal/mol between MITPDQ and 2XIR protein. Also, the ADMET properties of MITPDQ were calculated. From ADMET and docking studies, it was concluded that the MITPDQ has the potential to be a drug candidate after further investigations were done related with this field.

References

  • Ahadi, H., & Emami, S., 2020. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. European Journal of Medicinal Chemistry, 187, 111970. https://doi.org/10.1016/j.ejmech.2019.111970
  • Akkachairin, B., Rodphon, W., Reamtong, O., Mungthin, M., Tummatorn, J., Thongsornkleeb, C., & Ruchirawat, S., 2020. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorganic Chemistry, 98, 103732. https://doi.org/10.1016/j.bioorg.2020.103732
  • Ames, B. N., Lee, F. D., & Durston, W. E., 1973. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proceedings of the National Academy of Sciences of the United States of America, 70(3), 782–786. https://doi.org/10.1073/pnas.70.3.782
  • Bauernschmitt, R., & Ahlrichs, R., 1996. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4–5), 454–464. https://doi.org/10.1016/0009-2614(96)00440-X
  • Becke, A. D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
  • Berman, H. M., 2000. The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • BIOVIA, 2021 Discovery Studio Visualizer, version 21.1.0.20298. Dassault Systèmes, San Diego, CA.
  • Bueno, J., 2015. Antimicrobial Models in Nanotechnology. In Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases 19–38. Elsevier. https://doi.org/10.1016/B978-0-12-801317-5.00002-5
  • Carugo, A., & Draetta, G. F., 2019. Academic Discovery of Anticancer Drugs: Historic and Future Perspectives. Annual Review of Cancer Biology, 3(1), 385–408. https://doi.org/10.1146/annurev-cancerbio-030518-055645
  • Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R., 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the timedependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439–4449. https://doi.org/10.1063/1.475855
  • Choi, H. G., Ren, P., Adrian, F., Sun, F., Lee, H. S., Wang, X., Ding, Q., Zhang, G., Xie, Y., Zhang, J., Liu, Y., Tuntland, T., Warmuth, M., Manley, P. W., Mestan, J., Gray, N. S., & Sim, T., 2010. A Type-II Kinase Inhibitor Capable of Inhibiting the T315I “Gatekeeper” Mutant of Bcr-Abl. Journal of Medicinal Chemistry, 53(15), 5439–5448. https://doi.org/10.1021/jm901808w
  • Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T., 2021. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9, 205031212110343. https://doi.org/10.1177/20503121211034366
  • Ditchfield, R., 1972. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. The Journal of Chemical Physics, 56(11), 5688–5691. https://doi.org/10.1063/1.1677088
  • Faudone, G., Zhubi, R., Celik, F., Knapp, S., Chaikuad, A., Heering, J., & Merk, D., 2022. Design of a Potent TLX Agonist by Rational Fragment Fusion. Journal of Medicinal Chemistry, 65(3), 2288–2296. https://doi.org/10.1021/acs.jmedchem.1c01757
  • Ferreira, L. L. G., & Andricopulo, A. D., 2019. ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Frisch, M. J., G. W., Trucks, H. B., Schlegel, G. E., Scuseria, M. A., Robb, J. R., Cheeseman, G., Scalmani, V., Barone, G. A., Petersson, H., Nakatsuji, X., Li, M., Caricato, A., Marenich, J., Bloino, B. G., Janesko, R., Gomperts, B., Mennucci, H. P., Hratchian, J. V., Ortiz, A. F I., D. J. F. 2016. Gaussian 09, Revision E.01. Gaussian, Inc.
  • Güney, Y., Dilek, Ö., Sezgin, B., & Tilki, T., 2023. Exploring the Potential of Azo Compounds in Leukemia Treatment: Synthesis and Characterization of New Derivatives with Dimedone and Meldrum’s Acid End Groups. ChemistrySelect, 8(35), e20230264. https://doi.org/10.1002/slct.202302642
  • Hallek, M., 2019. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. American Journal of Hematology, 94(11), 1266–1287. https://doi.org/10.1002/ajh.25595
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R., 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Heravi, M. M., & Zadsirjan, V., 2020. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances, 10(72), 44247–44311. https://doi.org/10.1039/D0RA09198G
  • Hnatiuk, A. P., Bruyneel, A. A. N., Tailor, D., Pandrala, M., Dheeraj, A., Li, W., Serrano, R., Feyen, D. A. M., Vu, M. M., Amatya, P., Gupta, S., Nakauchi, Y., Morgado, I., Wiebking, V., Liao, R., Porteus, M. H., Majeti, R., Malhotra, S. V., & Mercola, M., 2022. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Research, 82(15), 2777–2791. https://doi.org/10.1158/0008-5472.CAN-21-3652
  • Hou, T., Wang, J., & Li, Y., 2007. ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine. Journal of Chemical Information and Modeling, 47(6), 2408–2415. https://doi.org/10.1021/ci7002076
  • Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., & De Fabritiis, G., 2017. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 33(19), 3036–3042. https://doi.org/10.1093/bioinformatics/btx350
  • Jung, H., Kim, J., Im, D., Moon, H., & Hah, J.-M., 2019. Design, synthesis, and in vitro evaluation of N-(3-(3-alkyl-1H-pyrazol-5-yl) phenyl)-aryl amide for selective RAF inhibition. Bioorganic & Medicinal Chemistry Letters, 29(4), 534–538. https://doi.org/10.1016/j.bmcl.2019.01.003
  • Kalinichenko, E., Faryna, A., Bozhok, T., Golyakovich, A., & Panibrat, A., 2023. Novel Phthalic-Based Anticancer Tyrosine Kinase Inhibitors: Design, Synthesis and Biological Activity. Current Issues in Molecular Biology, 45(3), 1820–1842. https://doi.org/10.3390/cimb45030117
  • Kalinichenko, E., Faryna, A., Bozhok, T., & Panibrat, A., 2021. Synthesis, In Vitro and In Silico Anticancer Activity of New 4-Methylbenzamide Derivatives Containing 2,6-Substituted Purines as Potential Protein Kinases Inhibitors. International Journal of Molecular Sciences, 22(23), 12738. https://doi.org/10.3390/ijms222312738
  • Kalinichenko, E., Faryna, A., Kondrateva, V., Vlasova, A., Shevchenko, V., Melnik, A., Avdoshko, O., & Belko, A., 2019. Synthesis, Biological Activities and Docking Studies of Novel 4-(Arylaminomethyl)benzamide Derivatives as Potential Tyrosine Kinase Inhibitors. Molecules, 24(19), 3543. https://doi.org/10.3390/molecules24193543
  • Karabacak Atay, Ç., Dilek, Ö., Tilki, T., & Dede, B., 2023. A novel imidazole-based azo molecule: synthesis, characterization, quantum chemical calculations, molecular docking, molecular dynamics simulations and ADMET properties. Journal of Molecular Modeling, 29(8), 226. https://doi.org/10.1007/s00894-023-05625-1
  • Kumar, A., Singh, A. K., Singh, H., Vijayan, V., Kumar, D., Naik, J., Thareja, S., Yadav, J. P., Pathak, P., Grishina, M., Verma, A., Khalilullah, H., Jaremko, M., Emwas, A.-H., & Kumar, P., 2023. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals, 16(2), 299. https://doi.org/10.3390/ph16020299
  • Lee, C., Yang, W., & Parr, R. G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lipinski, C. A., 2004. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lu, X., Zhang, Z., Ren, X., Pan, X., Wang, D., Zhuang, X., Luo, J., Yu, R., & Ding, K., 2015. Hybrid pyrimidine alkynyls inhibit the clinically resistance related Bcr-AblT315I mutant. Bioorganic & Medicinal Chemistry Letters, 25(17), 3458–3463. https://doi.org/10.1016/j.bmcl.2015.07.006
  • Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M., & Alam, M. M., 2013. Quinoline: A versatile heterocyclic. Saudi Pharmaceutical Journal, 21(1), 1–12. https://doi.org/10.1016/j.jsps.2012.03.002
  • McCann, J., Choi, E., Yamasaki, E., & Ames, B. N., 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proceedings of the National Academy of Sciences, 72(12), 5135–5139. https://doi.org/10.1073/pnas.72.12.5135
  • Merrick, J. P., Moran, D., & Radom, L., 2007. An Evaluation of Harmonic Vibrational Frequency Scale Factors. The Journal of Physical Chemistry A, 111(45), 11683–11700. https://doi.org/10.1021/jp073974n
  • Onakpoya, I. J., Heneghan, C. J., & Aronson, J. K., 2016. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Medicine, 14(1), 10. https://doi.org/10.1186/s12916-016-0553-2
  • Pandrala, M., Bruyneel, A. A. N., Hnatiuk, A. P., Mercola, M., & Malhotra, S. V., 2022. Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. Journal of Medicinal Chemistry, 65(16), 10898–10919. https://doi.org/10.1021/acs.jmedchem.1c01853
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E., 2004. UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rashid, H. ur, Xu, Y., Muhammad, Y., Wang, L., & Jiang, J., 2019. Research advances on anticancer activities of matrine and its derivatives: An updated overview. European Journal of Medicinal Chemistry, 161, 205–238. https://doi.org/10.1016/j.ejmech.2018.10.037
  • Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A., 2023. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
  • Singh, N., Vayer, P., Tanwar, S., Poyet, J.-L., Tsaioun, K., & Villoutreix, B. O., 2023. Drug discovery and development: introduction to the general public and patient groups. Frontiers in Drug Discovery, 3, 1201419. https://doi.org/10.3389/fddsv.2023.1201419
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Trott, O., & Olson, A. J., 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, A., Joshi, S., & Singh, D., 2013. Imidazole: Having Versatile Biological Activities. Journal of Chemistry, 2013, 1–12. https://doi.org/10.1155/2013/329412
  • Wolinski, K., Hinton, J. F., & Pulay, P., 1990. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D., 2021. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yadav, P., & Shah, K., 2021. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorganic Chemistry, 109, 104639. https://doi.org/10.1016/j.bioorg.2021.104639
  • Zhu, D., Huang, H., Pinkas, D. M., Luo, J., Ganguly, D., Fox, A. E., Arner, E., Xiang, Q., Tu, Z.-C., Bullock, A. N., Brekken, R. A., Ding, K., & Lu, X., 2019. 2-Amino-2,3-dihydro-1H-indene-5-carboxamide-Based Discoidin Domain Receptor 1 (DDR1) Inhibitors: Design, Synthesis, and in Vivo Antipancreatic Cancer Efficacy. Journal of Medicinal Chemistry, 62(16), 7431–7444. https://doi.org/10.1021/acs.jmedchem.9b00365
  • Zhurko, G. A. and Zhurko, D. A. ChemCraft, Tool for treatment of the chemical data, version 1.8; www.chemcraftprog.com

İmidazol ve Kinolin Bazlı Kanser Tedavisi için Ümit Verici Ajan; Sentezi, Karakterizasyonu ve Bilgisayarsal Hesaplamaları

Year 2024, , 798 - 810, 20.08.2024
https://doi.org/10.35414/akufemubid.1432554

Abstract

Bu çalışmada lösemi tedavisinde kullanılan nilotinibin sentezinde ara madde olarak kullanılan anilin türevinden yola çıkılarak yeni bir imidazol ve kinolin bazlı azo bileşiği (MITPDQ) sentezlendi ve sentezlenen maddenin yapısı NMR, FTIR, UV, FTIR ve MS gibi tekniklerle karakterize edildi. MITPDQ'nun optimize edilmiş geometrisini ve spektral verilerini elde etmek için DFT (B3LYP) yöntemi ve 6-311G (d,p) temel seti kullanılarak teorik hesaplamalar yapıldı. Deneysel sonuçlar teorik sonuçlarla karşılaştırıldı ve birbirleriyle uyumlu oldukları görüldü. MITPDQ'nun optimize edilmiş geometrisi kullanılarak, kanserle ilişkili proteinlerle de moleküler yerleştirme çalışmaları gerçekleştirildi. Yerleştirme sonuçlarından en yüksek yerleştirme puanının MITPDQ ile 2XIR proteini arasında -11,0 kcal/mol olduğu bulundu. Ayrıca MITPDQ'nun ADMET özellikleri de hesaplandı. ADMET ve Moleküler yerleştirme çalışmalarından bu alanla ilgili ileri araştırmalar yapılarak MITPDQ'nun ilaç adayı olma potansiyeline sahip olduğu sonucuna varıldı.

References

  • Ahadi, H., & Emami, S., 2020. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. European Journal of Medicinal Chemistry, 187, 111970. https://doi.org/10.1016/j.ejmech.2019.111970
  • Akkachairin, B., Rodphon, W., Reamtong, O., Mungthin, M., Tummatorn, J., Thongsornkleeb, C., & Ruchirawat, S., 2020. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorganic Chemistry, 98, 103732. https://doi.org/10.1016/j.bioorg.2020.103732
  • Ames, B. N., Lee, F. D., & Durston, W. E., 1973. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proceedings of the National Academy of Sciences of the United States of America, 70(3), 782–786. https://doi.org/10.1073/pnas.70.3.782
  • Bauernschmitt, R., & Ahlrichs, R., 1996. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4–5), 454–464. https://doi.org/10.1016/0009-2614(96)00440-X
  • Becke, A. D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
  • Berman, H. M., 2000. The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • BIOVIA, 2021 Discovery Studio Visualizer, version 21.1.0.20298. Dassault Systèmes, San Diego, CA.
  • Bueno, J., 2015. Antimicrobial Models in Nanotechnology. In Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases 19–38. Elsevier. https://doi.org/10.1016/B978-0-12-801317-5.00002-5
  • Carugo, A., & Draetta, G. F., 2019. Academic Discovery of Anticancer Drugs: Historic and Future Perspectives. Annual Review of Cancer Biology, 3(1), 385–408. https://doi.org/10.1146/annurev-cancerbio-030518-055645
  • Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R., 1998. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the timedependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439–4449. https://doi.org/10.1063/1.475855
  • Choi, H. G., Ren, P., Adrian, F., Sun, F., Lee, H. S., Wang, X., Ding, Q., Zhang, G., Xie, Y., Zhang, J., Liu, Y., Tuntland, T., Warmuth, M., Manley, P. W., Mestan, J., Gray, N. S., & Sim, T., 2010. A Type-II Kinase Inhibitor Capable of Inhibiting the T315I “Gatekeeper” Mutant of Bcr-Abl. Journal of Medicinal Chemistry, 53(15), 5439–5448. https://doi.org/10.1021/jm901808w
  • Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T., 2021. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Medicine, 9, 205031212110343. https://doi.org/10.1177/20503121211034366
  • Ditchfield, R., 1972. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. The Journal of Chemical Physics, 56(11), 5688–5691. https://doi.org/10.1063/1.1677088
  • Faudone, G., Zhubi, R., Celik, F., Knapp, S., Chaikuad, A., Heering, J., & Merk, D., 2022. Design of a Potent TLX Agonist by Rational Fragment Fusion. Journal of Medicinal Chemistry, 65(3), 2288–2296. https://doi.org/10.1021/acs.jmedchem.1c01757
  • Ferreira, L. L. G., & Andricopulo, A. D., 2019. ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Frisch, M. J., G. W., Trucks, H. B., Schlegel, G. E., Scuseria, M. A., Robb, J. R., Cheeseman, G., Scalmani, V., Barone, G. A., Petersson, H., Nakatsuji, X., Li, M., Caricato, A., Marenich, J., Bloino, B. G., Janesko, R., Gomperts, B., Mennucci, H. P., Hratchian, J. V., Ortiz, A. F I., D. J. F. 2016. Gaussian 09, Revision E.01. Gaussian, Inc.
  • Güney, Y., Dilek, Ö., Sezgin, B., & Tilki, T., 2023. Exploring the Potential of Azo Compounds in Leukemia Treatment: Synthesis and Characterization of New Derivatives with Dimedone and Meldrum’s Acid End Groups. ChemistrySelect, 8(35), e20230264. https://doi.org/10.1002/slct.202302642
  • Hallek, M., 2019. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. American Journal of Hematology, 94(11), 1266–1287. https://doi.org/10.1002/ajh.25595
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R., 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Heravi, M. M., & Zadsirjan, V., 2020. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances, 10(72), 44247–44311. https://doi.org/10.1039/D0RA09198G
  • Hnatiuk, A. P., Bruyneel, A. A. N., Tailor, D., Pandrala, M., Dheeraj, A., Li, W., Serrano, R., Feyen, D. A. M., Vu, M. M., Amatya, P., Gupta, S., Nakauchi, Y., Morgado, I., Wiebking, V., Liao, R., Porteus, M. H., Majeti, R., Malhotra, S. V., & Mercola, M., 2022. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Research, 82(15), 2777–2791. https://doi.org/10.1158/0008-5472.CAN-21-3652
  • Hou, T., Wang, J., & Li, Y., 2007. ADME Evaluation in Drug Discovery. 8. The Prediction of Human Intestinal Absorption by a Support Vector Machine. Journal of Chemical Information and Modeling, 47(6), 2408–2415. https://doi.org/10.1021/ci7002076
  • Jiménez, J., Doerr, S., Martínez-Rosell, G., Rose, A. S., & De Fabritiis, G., 2017. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 33(19), 3036–3042. https://doi.org/10.1093/bioinformatics/btx350
  • Jung, H., Kim, J., Im, D., Moon, H., & Hah, J.-M., 2019. Design, synthesis, and in vitro evaluation of N-(3-(3-alkyl-1H-pyrazol-5-yl) phenyl)-aryl amide for selective RAF inhibition. Bioorganic & Medicinal Chemistry Letters, 29(4), 534–538. https://doi.org/10.1016/j.bmcl.2019.01.003
  • Kalinichenko, E., Faryna, A., Bozhok, T., Golyakovich, A., & Panibrat, A., 2023. Novel Phthalic-Based Anticancer Tyrosine Kinase Inhibitors: Design, Synthesis and Biological Activity. Current Issues in Molecular Biology, 45(3), 1820–1842. https://doi.org/10.3390/cimb45030117
  • Kalinichenko, E., Faryna, A., Bozhok, T., & Panibrat, A., 2021. Synthesis, In Vitro and In Silico Anticancer Activity of New 4-Methylbenzamide Derivatives Containing 2,6-Substituted Purines as Potential Protein Kinases Inhibitors. International Journal of Molecular Sciences, 22(23), 12738. https://doi.org/10.3390/ijms222312738
  • Kalinichenko, E., Faryna, A., Kondrateva, V., Vlasova, A., Shevchenko, V., Melnik, A., Avdoshko, O., & Belko, A., 2019. Synthesis, Biological Activities and Docking Studies of Novel 4-(Arylaminomethyl)benzamide Derivatives as Potential Tyrosine Kinase Inhibitors. Molecules, 24(19), 3543. https://doi.org/10.3390/molecules24193543
  • Karabacak Atay, Ç., Dilek, Ö., Tilki, T., & Dede, B., 2023. A novel imidazole-based azo molecule: synthesis, characterization, quantum chemical calculations, molecular docking, molecular dynamics simulations and ADMET properties. Journal of Molecular Modeling, 29(8), 226. https://doi.org/10.1007/s00894-023-05625-1
  • Kumar, A., Singh, A. K., Singh, H., Vijayan, V., Kumar, D., Naik, J., Thareja, S., Yadav, J. P., Pathak, P., Grishina, M., Verma, A., Khalilullah, H., Jaremko, M., Emwas, A.-H., & Kumar, P., 2023. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals, 16(2), 299. https://doi.org/10.3390/ph16020299
  • Lee, C., Yang, W., & Parr, R. G., 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lipinski, C. A., 2004. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lu, X., Zhang, Z., Ren, X., Pan, X., Wang, D., Zhuang, X., Luo, J., Yu, R., & Ding, K., 2015. Hybrid pyrimidine alkynyls inhibit the clinically resistance related Bcr-AblT315I mutant. Bioorganic & Medicinal Chemistry Letters, 25(17), 3458–3463. https://doi.org/10.1016/j.bmcl.2015.07.006
  • Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M., & Alam, M. M., 2013. Quinoline: A versatile heterocyclic. Saudi Pharmaceutical Journal, 21(1), 1–12. https://doi.org/10.1016/j.jsps.2012.03.002
  • McCann, J., Choi, E., Yamasaki, E., & Ames, B. N., 1975. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proceedings of the National Academy of Sciences, 72(12), 5135–5139. https://doi.org/10.1073/pnas.72.12.5135
  • Merrick, J. P., Moran, D., & Radom, L., 2007. An Evaluation of Harmonic Vibrational Frequency Scale Factors. The Journal of Physical Chemistry A, 111(45), 11683–11700. https://doi.org/10.1021/jp073974n
  • Onakpoya, I. J., Heneghan, C. J., & Aronson, J. K., 2016. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Medicine, 14(1), 10. https://doi.org/10.1186/s12916-016-0553-2
  • Pandrala, M., Bruyneel, A. A. N., Hnatiuk, A. P., Mercola, M., & Malhotra, S. V., 2022. Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. Journal of Medicinal Chemistry, 65(16), 10898–10919. https://doi.org/10.1021/acs.jmedchem.1c01853
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E., 2004. UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rashid, H. ur, Xu, Y., Muhammad, Y., Wang, L., & Jiang, J., 2019. Research advances on anticancer activities of matrine and its derivatives: An updated overview. European Journal of Medicinal Chemistry, 161, 205–238. https://doi.org/10.1016/j.ejmech.2018.10.037
  • Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A., 2023. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
  • Singh, N., Vayer, P., Tanwar, S., Poyet, J.-L., Tsaioun, K., & Villoutreix, B. O., 2023. Drug discovery and development: introduction to the general public and patient groups. Frontiers in Drug Discovery, 3, 1201419. https://doi.org/10.3389/fddsv.2023.1201419
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F., 2021. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Trott, O., & Olson, A. J., 2009. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, A., Joshi, S., & Singh, D., 2013. Imidazole: Having Versatile Biological Activities. Journal of Chemistry, 2013, 1–12. https://doi.org/10.1155/2013/329412
  • Wolinski, K., Hinton, J. F., & Pulay, P., 1990. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D., 2021. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yadav, P., & Shah, K., 2021. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorganic Chemistry, 109, 104639. https://doi.org/10.1016/j.bioorg.2021.104639
  • Zhu, D., Huang, H., Pinkas, D. M., Luo, J., Ganguly, D., Fox, A. E., Arner, E., Xiang, Q., Tu, Z.-C., Bullock, A. N., Brekken, R. A., Ding, K., & Lu, X., 2019. 2-Amino-2,3-dihydro-1H-indene-5-carboxamide-Based Discoidin Domain Receptor 1 (DDR1) Inhibitors: Design, Synthesis, and in Vivo Antipancreatic Cancer Efficacy. Journal of Medicinal Chemistry, 62(16), 7431–7444. https://doi.org/10.1021/acs.jmedchem.9b00365
  • Zhurko, G. A. and Zhurko, D. A. ChemCraft, Tool for treatment of the chemical data, version 1.8; www.chemcraftprog.com
There are 49 citations in total.

Details

Primary Language English
Subjects Atomic, Molecular and Optical Physics (Other), Physical Chemistry (Other)
Journal Section Articles
Authors

Tolga Acar Yeşil 0000-0001-5983-8447

Ömer Dilek 0000-0003-1409-782X

Tahir Tilki 0000-0002-1040-2375

Early Pub Date July 23, 2024
Publication Date August 20, 2024
Submission Date February 6, 2024
Acceptance Date June 20, 2024
Published in Issue Year 2024

Cite

APA Yeşil, T. A., Dilek, Ö., & Tilki, T. (2024). Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(4), 798-810. https://doi.org/10.35414/akufemubid.1432554
AMA Yeşil TA, Dilek Ö, Tilki T. Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2024;24(4):798-810. doi:10.35414/akufemubid.1432554
Chicago Yeşil, Tolga Acar, Ömer Dilek, and Tahir Tilki. “Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 4 (August 2024): 798-810. https://doi.org/10.35414/akufemubid.1432554.
EndNote Yeşil TA, Dilek Ö, Tilki T (August 1, 2024) Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 4 798–810.
IEEE T. A. Yeşil, Ö. Dilek, and T. Tilki, “Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, pp. 798–810, 2024, doi: 10.35414/akufemubid.1432554.
ISNAD Yeşil, Tolga Acar et al. “Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/4 (August 2024), 798-810. https://doi.org/10.35414/akufemubid.1432554.
JAMA Yeşil TA, Dilek Ö, Tilki T. Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:798–810.
MLA Yeşil, Tolga Acar et al. “Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 4, 2024, pp. 798-10, doi:10.35414/akufemubid.1432554.
Vancouver Yeşil TA, Dilek Ö, Tilki T. Imidazole and Quinoline-Based Promising Agent for Cancer Treatment; Synthesis, Characterization, and Computational Calculations. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(4):798-810.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.