İletken Polimer Esaslı Nanojeneratörler
Year 2018,
Volume: 18 Issue: 2, 640 - 647, 31.08.2018
Ömer Faruk Ünsal
Ayşe Çelik Bedeloğlu
Abstract
Gerek doğada, gerekse şehir hayatında mekanik enerjiye diğer enerji türlerine kıyasla daha kolay ulaşılabilmektedir. Suyun yüksek debide aktığı bir akarsu yatağı, rüzgârın salladığı ağaç dalları, üzerinden araçların geçtiği bir köprü, yürüyen bir insanın eklem hareketleri ve zemine periyodik olarak uyguladığı basınç aslında birer atık mekanik enerji kaynağıdırlar. Rüzgar enerjisi, hidrolik enerji gibi büyük miktarlarda mekanik enerji sağlanabilen mecralarda uzun yıllardır enerji dönüşüm işlemi endüstriyel olarak gerçekleştirilmektedir. Son yıllarda daha küçük miktarlarda atık enerjinin dönüşümü ve kullanıma sunulması için nanojeneratörler üzerine araştırmalar yoğunlaşmıştır.
References
- Abdolhasani, M.M., Shirvanimoghaddam, K. and Naebe, M., 2016. PVDF/Graphene composite nano-fibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology.
- Abraham, K.M. and Jiang, Z., 1996. A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery. Journal of Electrochemistry Society, 143.
- Baeriswyl, D., Campell, D.K. and Mazumdar, S., 1992. Conjugated Conducting Polymers, Hans-Joachim Queisser(Editor), Springer,9-12, 109.
- Cui, S., Zheng, Y., Liang, J. and Wang, D., 2016. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci., 2016, 7, 6477–6483.
- Cochrane, C., Kim, B. and Koncar, V., 2006. Intelligent Textiles and Clothing, Mattila, H., Woodhead Publishing, 326-339.
- Davies, D. K.; 1969. Charge generation on dielectric surfaces. British journal of Applied Physics, Ser. 2, Vol. 2.
- Ganesh, R.S., Sharma, S.K., Abinnas, N., Durgadevi, E., Raji, P., Ponnusamy, S., Muthamizchelvan, C., Hayakawa, Y. and Kim, D.Y., 2017. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method. Materials Chemistry and Physics, 192,274-281.
- Gao, P.X., Song, J. and Wang, Z.L., 2007. Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Advanced Materials, 19, 67-72.
- Gu, L., Cui, N., Cheng, L., Xu, Q., Bai, S., yuan, M., Wu, W., Liu, J., Zhao, Y., Ma, F., Qin, Y. and Wang, Z.L., 2013. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Letters, 13, 91-94.
- Henry, P. S. H., 1953. The role of asymmetric rubbing in the generation of static electricity. British Journal of Applied Physics.
- Hu, C.J., Lin, Y.H., Tang, C.W., Tsai, M.Y., Hsu, W.K. and Kuo, H.F., 2011. ZnO-coated carbon nanotubes: flexible piezoelectric generators. Advanced Materials, 23, 2941-2945.
- Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q. and Zhu, M., 2015. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidenefluoride piezoelectric nano-fibers. Nano Energy, 14, 226-235.
- Jonas, F. and Heywang, G., 1994. Technical applications for conductive polymers. Electrochimica Acta, 39, 1345-1347.
- Kim, J., Lee, J.H., Lee, J., Yamauchi, Y., Choi, C.H. and Kim, J.H., 2017. Hybrid energy devices combining nanogenerators and energy storage systems for self charging capability. Applied Materials, 5.
- Ko, E.J., Lee, E.J., Choi, M.H., Sung, T.H. and Moon, D.K., 2017. PVDF based flexible piezoelectric nanogenerators using conjugated polymer: PCBM blend systems. Sensors and Actuators A: Physical, 259, 112-120.
- Koerner, H., Liu, W., Alexander, M., Mirau, P., Dowty, H. and Vaia, R.A., 2005. Deformation–morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer, 46, 4405-4420.
- Kumar, D. and Sharma, R.C., 1998. Advances in conductive polymers. Europan Polymer Journal, 34, 1053-1060.
- Lee, K.Y., Kumar, B., Seo, J.S., Kim, K.H., Sohn, J.I., Cha, S.N., Choi, D., Wang, Z.L. and Kim, S.W., 2012. P-Type Polymer-Hybridized High Performance Piezoelectric Nanogenerators. Nano Letters, 12, 1959-1964.
- Leng, Q., Chen, L., Guo, H., Liu, J., Hu, C. and Xi, Y., 2014. Harvesting heat energy from hot/cold water with a pyroelectric generator. Journal of Materials Chemistry, 2, 11940-11947.
- Ling, B.K., Li, T., Hng, H.H., Boey, F., Zhang, T., and Li, S., 2014. Waste Energy Harvesting: Mechanical and Thermal Energies. 24, Springer. 15-27.
- Lu, X., Qu, H. and Skorobogatiy, M., 2017. Piezoelectric Micro-and Nano-structured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ACS Nano.
- MacDiarmic, A.G., 2001. “Synthetic Metals”: A novel role for organic polymers(Nobel Lecture). Angewandte Chemie International Edition, 40, 2581-2590
- . Meyer, W.H., 1998. Polymer electrolytes for lithium-ion batteries. Advanced Materials, 10.
- Martin, C.R., 1995. Template synthesis of electronically conductive polymer nanostructures. Account of Chemical Researches, 28, No:2.
- Noda, A. and Watanabe, M., 2000. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 45, 1265-1270.
- Pu, X., Li, L., Liu, M., Jiang, C., Du, C., Zhao, Z., Hu, W. and Wang, Z.L., 2015. Wearable Self-Charging Power Textile Based on FlexibleYarn Supercapacitors and Fabric Nanogenerators. Advanced Materials, 28, 98-105.
- Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V. and Siores, E., 2014. Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy and Environmental Science, 7, 1670-1679.
- Shukla, S.K., Singh, N.B. and Rastogi, R.P., 2013. Efficient ammonia sensing over zinc oxide/polyaniline nanocomposite. Indian Journal of Engineering & Materials Sciences, 20, 319-324.
- Wang, J., Wen, Z., Zi, Y., Zhou, P., Lin, J., Guo, H., Xu, Y. and Wang, Z.L., 2016. All-Plastic-Materials Based Self Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 26, 1070-1076.
- Wang, Z.L. and Song, J., 2006. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242-245.
- Wang, Z.L., 2007. Nanopiezotronics. Advanced Materials, 19, 889-892.
- Wang, Z.L., 2014. Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discussions.
- Xu, G.Q., Lv, J., Zheng, Z.X. and Wu, Y.C., 2012. Polypyrrole(PPy) nanowire arrays entrapped with glucose oxidase biosensor for glucose detection. NEMS 2012(Conference Paper).
- Yu, H., Huang, T., Lu, M., Mao, M, Zhang, Q. and Wang, H., 2013. .; Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, 24.
Year 2018,
Volume: 18 Issue: 2, 640 - 647, 31.08.2018
Ömer Faruk Ünsal
Ayşe Çelik Bedeloğlu
References
- Abdolhasani, M.M., Shirvanimoghaddam, K. and Naebe, M., 2016. PVDF/Graphene composite nano-fibers with enhanced piezoelectric performance for development of robust nanogenerators. Composites Science and Technology.
- Abraham, K.M. and Jiang, Z., 1996. A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery. Journal of Electrochemistry Society, 143.
- Baeriswyl, D., Campell, D.K. and Mazumdar, S., 1992. Conjugated Conducting Polymers, Hans-Joachim Queisser(Editor), Springer,9-12, 109.
- Cui, S., Zheng, Y., Liang, J. and Wang, D., 2016. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci., 2016, 7, 6477–6483.
- Cochrane, C., Kim, B. and Koncar, V., 2006. Intelligent Textiles and Clothing, Mattila, H., Woodhead Publishing, 326-339.
- Davies, D. K.; 1969. Charge generation on dielectric surfaces. British journal of Applied Physics, Ser. 2, Vol. 2.
- Ganesh, R.S., Sharma, S.K., Abinnas, N., Durgadevi, E., Raji, P., Ponnusamy, S., Muthamizchelvan, C., Hayakawa, Y. and Kim, D.Y., 2017. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method. Materials Chemistry and Physics, 192,274-281.
- Gao, P.X., Song, J. and Wang, Z.L., 2007. Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices. Advanced Materials, 19, 67-72.
- Gu, L., Cui, N., Cheng, L., Xu, Q., Bai, S., yuan, M., Wu, W., Liu, J., Zhao, Y., Ma, F., Qin, Y. and Wang, Z.L., 2013. Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode. Nano Letters, 13, 91-94.
- Henry, P. S. H., 1953. The role of asymmetric rubbing in the generation of static electricity. British Journal of Applied Physics.
- Hu, C.J., Lin, Y.H., Tang, C.W., Tsai, M.Y., Hsu, W.K. and Kuo, H.F., 2011. ZnO-coated carbon nanotubes: flexible piezoelectric generators. Advanced Materials, 23, 2941-2945.
- Huang, T., Wang, C., Yu, H., Wang, H., Zhang, Q. and Zhu, M., 2015. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidenefluoride piezoelectric nano-fibers. Nano Energy, 14, 226-235.
- Jonas, F. and Heywang, G., 1994. Technical applications for conductive polymers. Electrochimica Acta, 39, 1345-1347.
- Kim, J., Lee, J.H., Lee, J., Yamauchi, Y., Choi, C.H. and Kim, J.H., 2017. Hybrid energy devices combining nanogenerators and energy storage systems for self charging capability. Applied Materials, 5.
- Ko, E.J., Lee, E.J., Choi, M.H., Sung, T.H. and Moon, D.K., 2017. PVDF based flexible piezoelectric nanogenerators using conjugated polymer: PCBM blend systems. Sensors and Actuators A: Physical, 259, 112-120.
- Koerner, H., Liu, W., Alexander, M., Mirau, P., Dowty, H. and Vaia, R.A., 2005. Deformation–morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites. Polymer, 46, 4405-4420.
- Kumar, D. and Sharma, R.C., 1998. Advances in conductive polymers. Europan Polymer Journal, 34, 1053-1060.
- Lee, K.Y., Kumar, B., Seo, J.S., Kim, K.H., Sohn, J.I., Cha, S.N., Choi, D., Wang, Z.L. and Kim, S.W., 2012. P-Type Polymer-Hybridized High Performance Piezoelectric Nanogenerators. Nano Letters, 12, 1959-1964.
- Leng, Q., Chen, L., Guo, H., Liu, J., Hu, C. and Xi, Y., 2014. Harvesting heat energy from hot/cold water with a pyroelectric generator. Journal of Materials Chemistry, 2, 11940-11947.
- Ling, B.K., Li, T., Hng, H.H., Boey, F., Zhang, T., and Li, S., 2014. Waste Energy Harvesting: Mechanical and Thermal Energies. 24, Springer. 15-27.
- Lu, X., Qu, H. and Skorobogatiy, M., 2017. Piezoelectric Micro-and Nano-structured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. ACS Nano.
- MacDiarmic, A.G., 2001. “Synthetic Metals”: A novel role for organic polymers(Nobel Lecture). Angewandte Chemie International Edition, 40, 2581-2590
- . Meyer, W.H., 1998. Polymer electrolytes for lithium-ion batteries. Advanced Materials, 10.
- Martin, C.R., 1995. Template synthesis of electronically conductive polymer nanostructures. Account of Chemical Researches, 28, No:2.
- Noda, A. and Watanabe, M., 2000. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 45, 1265-1270.
- Pu, X., Li, L., Liu, M., Jiang, C., Du, C., Zhao, Z., Hu, W. and Wang, Z.L., 2015. Wearable Self-Charging Power Textile Based on FlexibleYarn Supercapacitors and Fabric Nanogenerators. Advanced Materials, 28, 98-105.
- Soin, N., Shah, T.H., Anand, S.C., Geng, J., Pornwannachai, W., Mandal, P., Reid, D., Sharma, S., Hadimani, R.L., Bayramol, D.V. and Siores, E., 2014. Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications. Energy and Environmental Science, 7, 1670-1679.
- Shukla, S.K., Singh, N.B. and Rastogi, R.P., 2013. Efficient ammonia sensing over zinc oxide/polyaniline nanocomposite. Indian Journal of Engineering & Materials Sciences, 20, 319-324.
- Wang, J., Wen, Z., Zi, Y., Zhou, P., Lin, J., Guo, H., Xu, Y. and Wang, Z.L., 2016. All-Plastic-Materials Based Self Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 26, 1070-1076.
- Wang, Z.L. and Song, J., 2006. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242-245.
- Wang, Z.L., 2007. Nanopiezotronics. Advanced Materials, 19, 889-892.
- Wang, Z.L., 2014. Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discussions.
- Xu, G.Q., Lv, J., Zheng, Z.X. and Wu, Y.C., 2012. Polypyrrole(PPy) nanowire arrays entrapped with glucose oxidase biosensor for glucose detection. NEMS 2012(Conference Paper).
- Yu, H., Huang, T., Lu, M., Mao, M, Zhang, Q. and Wang, H., 2013. .; Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology, 24.