Aralık Tip II Genelleştirilmiş Çan Şekilli Bulanık Sayının Aralık Yakınsaması
Year 2019,
Volume: 19 Issue: 3, 595 - 600, 31.12.2019
Sinem Peker
,
Efendi Nasibov (nasiboğlu)
Abstract
Üyelik derecelerinin
bulanık olduğu durumlarda Tip II bulanık sayıları kullanılır. Ancak bu sayılar bazı
yöntemlerde uygulanamayabilir ve bunların yakınsamaları oluşturulmak
istenebilir. Bu çalışmada, aralık Tip II genelleştirilmiş çan şekilli bulanık
sayısının aralık yaklaşımı dikkate alınmış ve özel bir hal için aralığın
bilinmeyen parametrelerinin formülleri bulunmuştur.
References
- Abbasbandy, S. and Hajjari, T., 2010. Weighted trapezoidal approximation-preserving cores of a fuzzy number, Comput. Math. Appl. 59 3066–3077
- Ban, A.I., Brândaş, A. Coroianu, L., Negrutiu, C., Nica, O, 2011. Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value, Comput. Math. Appl. 61, 1379–1401.
- Ban, A.I. and Coroianu, L., 2012. Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity, Int. J. Approx. Reason. 53, 805–836.
- Cano, Y.C., Flores, H.R., Gomide, F., 2008. A new type of approximation for fuzzy intervals. Fuzzy Sets and Systems, 159, 1376-1383.
- Chanas, S., 2001. On the interval approximation of a fuzzy number. Fuzzy Sets and Systems, 122, 353-356.
- Chu, T.C. and Lin, Y.C.., 2009. An interval arithmetic based fuzzy TOPSIS model. Expert Systems with Applications, 36, 10870-10876.
- Coroianu, L., Gal, S.G., Bede, B., 2014. Approximation of fuzzy numbers by Bernstein operators of max-product kind, Fuzzy Sets Systems, 257, 41–66.
- Coroianu, L., Stefanini, L. 2016. General approximation of fuzzy numbers by F-transform. Fuzzy Sets and Systems, 288, 46-74.
- Greenfield, S. and Chiclana, F., 2018. Type-Reduced Set structure and the truncated type-2 fuzzy set. Fuzzy Sets and Systems, 352, 119-141.
- Grzegorzewski, P., 2002. Nearest interval approximation of a fuzzy number. Fuzzy Sets and Systems, 130, 321-330.
- Nasibov, E.N. and Peker, S, 2008. On the nearest parametric approximation of a fuzzy number. Fuzzy Sets and Systems, 159, 1365-1375.
- Sanchez, M.A., Castillo, 0. and Castro, J.R., 2015. Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Systems with Applications, 42, 50904-50914.
- Yeh, C.T., 2011. Weighted semi-trapezoidal approximations of fuzzy numbers, Fuzzy Sets Systems, 165, 61–80.
- Yeh, C.T. and Chu, H.M., 2014. Approximations by LR-type fuzzy numbers. Fuzzy Sets and Systems, 257, 23-40.
- Zhao, X.R. and Hu, B.O., 2015. Fuzzy and interval-valued fuzzy decision-theoretic rough set approaches based on fuzzy probability measure. Information Sciences, 298, 534-554.
Year 2019,
Volume: 19 Issue: 3, 595 - 600, 31.12.2019
Sinem Peker
,
Efendi Nasibov (nasiboğlu)
References
- Abbasbandy, S. and Hajjari, T., 2010. Weighted trapezoidal approximation-preserving cores of a fuzzy number, Comput. Math. Appl. 59 3066–3077
- Ban, A.I., Brândaş, A. Coroianu, L., Negrutiu, C., Nica, O, 2011. Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value, Comput. Math. Appl. 61, 1379–1401.
- Ban, A.I. and Coroianu, L., 2012. Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity, Int. J. Approx. Reason. 53, 805–836.
- Cano, Y.C., Flores, H.R., Gomide, F., 2008. A new type of approximation for fuzzy intervals. Fuzzy Sets and Systems, 159, 1376-1383.
- Chanas, S., 2001. On the interval approximation of a fuzzy number. Fuzzy Sets and Systems, 122, 353-356.
- Chu, T.C. and Lin, Y.C.., 2009. An interval arithmetic based fuzzy TOPSIS model. Expert Systems with Applications, 36, 10870-10876.
- Coroianu, L., Gal, S.G., Bede, B., 2014. Approximation of fuzzy numbers by Bernstein operators of max-product kind, Fuzzy Sets Systems, 257, 41–66.
- Coroianu, L., Stefanini, L. 2016. General approximation of fuzzy numbers by F-transform. Fuzzy Sets and Systems, 288, 46-74.
- Greenfield, S. and Chiclana, F., 2018. Type-Reduced Set structure and the truncated type-2 fuzzy set. Fuzzy Sets and Systems, 352, 119-141.
- Grzegorzewski, P., 2002. Nearest interval approximation of a fuzzy number. Fuzzy Sets and Systems, 130, 321-330.
- Nasibov, E.N. and Peker, S, 2008. On the nearest parametric approximation of a fuzzy number. Fuzzy Sets and Systems, 159, 1365-1375.
- Sanchez, M.A., Castillo, 0. and Castro, J.R., 2015. Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Systems with Applications, 42, 50904-50914.
- Yeh, C.T., 2011. Weighted semi-trapezoidal approximations of fuzzy numbers, Fuzzy Sets Systems, 165, 61–80.
- Yeh, C.T. and Chu, H.M., 2014. Approximations by LR-type fuzzy numbers. Fuzzy Sets and Systems, 257, 23-40.
- Zhao, X.R. and Hu, B.O., 2015. Fuzzy and interval-valued fuzzy decision-theoretic rough set approaches based on fuzzy probability measure. Information Sciences, 298, 534-554.