Research Article
BibTex RIS Cite

Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications

Year 2021, Volume: 21 Issue: 3, 745 - 754, 30.06.2021
https://doi.org/10.35414/akufemubid.873404

Abstract

Advances in nanotechnology enables building systems and devices with outstanding properties and functions, which makes the material aspect critically important. Materials supporting surface phonon polaritons with their resonances located in the infrared range is interesting for radiation-based energy applications, with lower optical losses exhibited compared to plasmonic materials (i.e., metals). In this work, polaritonic behaviors of three prominent phononic materials, i.e., SiC, GaN, and cBN are studied. Polaritonic figure of merit relations are analytically solved and interpreted along with the polariton propagation lengths and penetration depths. Results obtained for single material-vacuum interface revealed the highest peak magnitude of overall polaritonic figure of merit for SiC, followed by cBN, and GaN; with these merits strong dependences on materials transverse optical phonon frequencies and resonance frequencies. The results highlight the selection of the proper material to work optimally in the desired spectral range.

References

  • Basu, S. 2016. Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps: Fundamentals and Applications, Elsevier, 119-264.
  • Berini, P., 2006. Figures of Merit for Surface Plasmon Waveguides, Optics Express, 14, 26, 13030–42.
  • Buckley, R., P. Berini., 2007. Figures of Merit for 2D Surface Plasmon Waveguides and Application to Metal Stripes, Optics Express, 15, 19, 12174–82.
  • Caldwell, J. D. et al., 2015. Low-Loss, Infrared and Terahertz Nanophotonics Using Surface Phonon Polaritons, Nanophotonics, 4, 44-68.
  • Chen, Y., and Xuan, Y., 2015. The Influence of Surface Roughness on Nanoscale Radiative Heat Flux between Two Objects, Journal of Quantitative Spectroscopy and Radiative Transfer, 158, 52–60.
  • Didari, A., Elçioğlu, E.B., Okutucu Özyurt, T. and Mengüç, M.P., 2018a. Near-Field Radiative Transfer in Spectrally Tunable Double-Layer Phonon-Polaritonic Metamaterials, Journal of Quantitative Spectroscopy and Radiative Transfer, 212, 120-127.
  • Didari, A., Elçioğlu, E.B., Okutucu-Özyurt, T., and Mengüç, M.P., 2018b. Tailoring Near-Field Thermal Radiation with Mesoporous GaN and h-BN Designer Metamaterials, in Eurotherm Seminar 110 – Computational Thermal Radiation in Participating Media - VI, Cascais, Portugal.
  • Didari, A., and Mengüç. M. P., 2015. Near-Field Thermal Emission between Corrugated Surfaces Separated by Nano-Gaps, Journal of Quantitative Spectroscopy and Radiative Transfer, 158, 43–51.
  • Didari, A. and Mengüç, M.P., 2017. A Design Tool for Direct and Non-Stochastic Calculations of near-Field Radiative Transfer in Complex Structures: The NF-RT-FDTD Algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 197, 95–105.
  • Dönmezer, F. N. 2009. A Numerical Study on Dependent Absorption and Scattering by Interacting Nanosized Particles, M.Sc. Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, 99.
  • Dönmezer, F. N., Mengüç, M.P., and Okutucu, T., 2010. Dependent Absorption and Scattering by Interacting Nanoparticles. in 6th International Symposium on Radiative Transfer (RAD10), Antalya, Turkey.
  • Dubrovkin, A.M. et al., 2020. Resonant Nanostructures for Highly Confined and Ultra-Sensitive Surface Phonon-Polaritons, Nature Communications, 11, 1863, 1–7.
  • Elçioğlu, E. B. 2018. Fabrication of Silicon Carbide-on-Silicon Based Devices for Effective Near-Field Thermal Radiation Transfer, PhD Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, 183.
  • Elçioğlu, E. B., Didari, A., Okutucu-Özyurt, T., and Mengüç, M.P., 2017. GaN-SiC Katmanlı Nano-Yapılar ve Yakın-Alan Işınımına Sıcaklık Farkı ve Mesafenin Etkileri, in 21. Ulusal Isı Bilimi ve Tekniği Kongresi ULIBTK’17 Bildiriler Kitabı, Çorum, Turkey.
  • Feynmann, R., 1960. There’s Plenty of Room at the Bottom. Engineering and Science, 23(5): 22–36.
  • Francoeur, M., and Mengüç, M.P., 2008. Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(2), 280–93.
  • Francoeur, M. 2010. Near-Field Radiative Transfer: Thermal Radiation, Thermophotovoltaic Power Generation and Optical Characterization, PhD Thesis, University of Kentucky, The Graduate School, 323.
  • Francoeur, M., 2015. Nanostructures Feel the Heat, Nature Nanotechnology, 10, 206-208.
  • Howell, J.R., Mengüç, M.P., Daun, K., and Siegel, R., 2021. Thermal Radiation Heat Transfer. 7th Edition, Boca Raton, FL: CRC Press, Taylor & Francis Group, 741-774.
  • Huber, A. J., Deutsch, B., Novotny, L. and Hillenbrand, R., 2008. Focusing of Surface Phonon Polaritons, Applied Physics Letters 92, 203104.
  • Huseynov, E.M., 2020. Thermal Stability and Heat Flux Investigation of Neutron-Irradiated Nanocrystalline Silicon Carbide (3C – SiC) Using DSC Spectroscopy, Ceramics International, 46, 5645–48.
  • Lebedev, A. A, and Chelnokov, V.E., 1999. Wide-gap semiconductors for high-power electronics, Semiconductors, 33(9), 999-1001.
  • Litvinov, D., Taylor II, C. A., Clarke, R., 1998. Semiconducting cubic boron nitride, Diamond and Related Materials, 7, 360—364.
  • Maier, S.A., 2006. Effective Mode Volume of Nanoscale Plasmon Cavities, Optical and Quantum Electronics 38, 257–67.
  • Mishra, U.K.M., Shen, L., Kazior, T.E. and Wu, Y.-F., 2008. GaN-Based RF Power Devices and Amplifiers, Proceedings of the IEEE, 96(2): 287–305.
  • Narayanaswamy, A. and Chen, G., 2003. Surface Modes for near Field Thermophotovoltaics, Applied Physics Letters, 82(20), 3544-3546.
  • Ordonez-Miranda, J., et al. 2017. ,Polaritonic Figure of Merit of Plane Structures., Optics Express 25(21): 25938–25950.
  • Park, K. and Zhang, Z., 2013. Fundamentals and Applications of Near-Field Radiative Energy Transfer, Frontiers in Heat and Mass Transfer, 4, 013001.
  • Pearton, S.J., et al., 2002, New applications advisable for gallium nitride, Materials Today, 5(6), 24-31.
  • Sharma, V., et al., 2020. Thermal Transport Properties of Boron Nitride Based Materials: A Review, Renewable and Sustainable Energy Reviews, 120, 109622.
  • Talwar, D. N., 2004. Lattice Dynamics of Defects and Thermal Properties of 3C-SiC, in SiC Power Materials (Ed: Feng, Z. C.), Springer-Verlag Berlin Heidelberg, 161-208.
  • Wondrak, W., et al., 2001. SiC Devices for Advanced Power and High-Temperature Applications, IEEE Transactions on Industrial Electronics, 48(2), 307-308.
  • Zhao, Y., Tang, G.H., and Li, Z.Y., 2012. Parametric Investigation for Suppressing Near-Field Thermal Radiation Between Two Spherical Nanoparticles, International Communications in Heat and Mass Transfer, 39, 918–922.

SiC, cBN ve GaN’ün Spektral-Seçici Nano-Optik Uygulamalar İçin Polaritonik Performanslarının Belirlenmesi

Year 2021, Volume: 21 Issue: 3, 745 - 754, 30.06.2021
https://doi.org/10.35414/akufemubid.873404

Abstract

Nanoteknolojideki gelişmeler neticesinde üstün özellik ve fonksiyonlara sahip sistem ve cihazların üretimi ile, söz konusu sistemlerde kullanılacak malzemelerin seçimi kritik öneme sahip hale gelmiştir. Yüzey fonon polaritonlarını destekleyen ve rezonansları kızılötesi bölgede olan malzemeler, plazmonik alternatiflerine göre (ör: metaller) daha düşük optik kayıplar sebebiyle de ışınım tabanlı enerji uygulamaları için önem taşımaktadır. Bu çalışmada, literatürde öne çıkan üç fononik malzeme olarak SiC, GaN ve cBN’ün polaritonik davranışları incelenmiştir. Polaritonik performans katsayıları analitik olarak çözülmüş ve elde edilen polariton yayılma uzunluğu ve nüfuz derinliği sonuçları ile birlikte değerlendirilmiştir. Malzeme-vakum arayüzü için elde edilen sonuçlar, genel polaritonik performans değerinin SiC için en yüksek olduğunu, SiC’ü sırasıyla cBN ve GaN’ın takip ettiğini ve bu performans göstergelerinin malzemelerin transvers optik fonon frekansı ve rezonans frekansına bağlılığını göstermiştir. Elde edilen sonuçlar, ilgilenilen spektral aralıkta optimal performansla çalışacak malzeme seçiminin önemine atıf yapmaktadır.

References

  • Basu, S. 2016. Near-Field Radiative Heat Transfer across Nanometer Vacuum Gaps: Fundamentals and Applications, Elsevier, 119-264.
  • Berini, P., 2006. Figures of Merit for Surface Plasmon Waveguides, Optics Express, 14, 26, 13030–42.
  • Buckley, R., P. Berini., 2007. Figures of Merit for 2D Surface Plasmon Waveguides and Application to Metal Stripes, Optics Express, 15, 19, 12174–82.
  • Caldwell, J. D. et al., 2015. Low-Loss, Infrared and Terahertz Nanophotonics Using Surface Phonon Polaritons, Nanophotonics, 4, 44-68.
  • Chen, Y., and Xuan, Y., 2015. The Influence of Surface Roughness on Nanoscale Radiative Heat Flux between Two Objects, Journal of Quantitative Spectroscopy and Radiative Transfer, 158, 52–60.
  • Didari, A., Elçioğlu, E.B., Okutucu Özyurt, T. and Mengüç, M.P., 2018a. Near-Field Radiative Transfer in Spectrally Tunable Double-Layer Phonon-Polaritonic Metamaterials, Journal of Quantitative Spectroscopy and Radiative Transfer, 212, 120-127.
  • Didari, A., Elçioğlu, E.B., Okutucu-Özyurt, T., and Mengüç, M.P., 2018b. Tailoring Near-Field Thermal Radiation with Mesoporous GaN and h-BN Designer Metamaterials, in Eurotherm Seminar 110 – Computational Thermal Radiation in Participating Media - VI, Cascais, Portugal.
  • Didari, A., and Mengüç. M. P., 2015. Near-Field Thermal Emission between Corrugated Surfaces Separated by Nano-Gaps, Journal of Quantitative Spectroscopy and Radiative Transfer, 158, 43–51.
  • Didari, A. and Mengüç, M.P., 2017. A Design Tool for Direct and Non-Stochastic Calculations of near-Field Radiative Transfer in Complex Structures: The NF-RT-FDTD Algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 197, 95–105.
  • Dönmezer, F. N. 2009. A Numerical Study on Dependent Absorption and Scattering by Interacting Nanosized Particles, M.Sc. Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, 99.
  • Dönmezer, F. N., Mengüç, M.P., and Okutucu, T., 2010. Dependent Absorption and Scattering by Interacting Nanoparticles. in 6th International Symposium on Radiative Transfer (RAD10), Antalya, Turkey.
  • Dubrovkin, A.M. et al., 2020. Resonant Nanostructures for Highly Confined and Ultra-Sensitive Surface Phonon-Polaritons, Nature Communications, 11, 1863, 1–7.
  • Elçioğlu, E. B. 2018. Fabrication of Silicon Carbide-on-Silicon Based Devices for Effective Near-Field Thermal Radiation Transfer, PhD Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, 183.
  • Elçioğlu, E. B., Didari, A., Okutucu-Özyurt, T., and Mengüç, M.P., 2017. GaN-SiC Katmanlı Nano-Yapılar ve Yakın-Alan Işınımına Sıcaklık Farkı ve Mesafenin Etkileri, in 21. Ulusal Isı Bilimi ve Tekniği Kongresi ULIBTK’17 Bildiriler Kitabı, Çorum, Turkey.
  • Feynmann, R., 1960. There’s Plenty of Room at the Bottom. Engineering and Science, 23(5): 22–36.
  • Francoeur, M., and Mengüç, M.P., 2008. Role of Fluctuational Electrodynamics in Near-Field Radiative Heat Transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(2), 280–93.
  • Francoeur, M. 2010. Near-Field Radiative Transfer: Thermal Radiation, Thermophotovoltaic Power Generation and Optical Characterization, PhD Thesis, University of Kentucky, The Graduate School, 323.
  • Francoeur, M., 2015. Nanostructures Feel the Heat, Nature Nanotechnology, 10, 206-208.
  • Howell, J.R., Mengüç, M.P., Daun, K., and Siegel, R., 2021. Thermal Radiation Heat Transfer. 7th Edition, Boca Raton, FL: CRC Press, Taylor & Francis Group, 741-774.
  • Huber, A. J., Deutsch, B., Novotny, L. and Hillenbrand, R., 2008. Focusing of Surface Phonon Polaritons, Applied Physics Letters 92, 203104.
  • Huseynov, E.M., 2020. Thermal Stability and Heat Flux Investigation of Neutron-Irradiated Nanocrystalline Silicon Carbide (3C – SiC) Using DSC Spectroscopy, Ceramics International, 46, 5645–48.
  • Lebedev, A. A, and Chelnokov, V.E., 1999. Wide-gap semiconductors for high-power electronics, Semiconductors, 33(9), 999-1001.
  • Litvinov, D., Taylor II, C. A., Clarke, R., 1998. Semiconducting cubic boron nitride, Diamond and Related Materials, 7, 360—364.
  • Maier, S.A., 2006. Effective Mode Volume of Nanoscale Plasmon Cavities, Optical and Quantum Electronics 38, 257–67.
  • Mishra, U.K.M., Shen, L., Kazior, T.E. and Wu, Y.-F., 2008. GaN-Based RF Power Devices and Amplifiers, Proceedings of the IEEE, 96(2): 287–305.
  • Narayanaswamy, A. and Chen, G., 2003. Surface Modes for near Field Thermophotovoltaics, Applied Physics Letters, 82(20), 3544-3546.
  • Ordonez-Miranda, J., et al. 2017. ,Polaritonic Figure of Merit of Plane Structures., Optics Express 25(21): 25938–25950.
  • Park, K. and Zhang, Z., 2013. Fundamentals and Applications of Near-Field Radiative Energy Transfer, Frontiers in Heat and Mass Transfer, 4, 013001.
  • Pearton, S.J., et al., 2002, New applications advisable for gallium nitride, Materials Today, 5(6), 24-31.
  • Sharma, V., et al., 2020. Thermal Transport Properties of Boron Nitride Based Materials: A Review, Renewable and Sustainable Energy Reviews, 120, 109622.
  • Talwar, D. N., 2004. Lattice Dynamics of Defects and Thermal Properties of 3C-SiC, in SiC Power Materials (Ed: Feng, Z. C.), Springer-Verlag Berlin Heidelberg, 161-208.
  • Wondrak, W., et al., 2001. SiC Devices for Advanced Power and High-Temperature Applications, IEEE Transactions on Industrial Electronics, 48(2), 307-308.
  • Zhao, Y., Tang, G.H., and Li, Z.Y., 2012. Parametric Investigation for Suppressing Near-Field Thermal Radiation Between Two Spherical Nanoparticles, International Communications in Heat and Mass Transfer, 39, 918–922.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Elif Begüm Elçioğlu 0000-0002-1005-4294

Publication Date June 30, 2021
Submission Date February 2, 2021
Published in Issue Year 2021 Volume: 21 Issue: 3

Cite

APA Elçioğlu, E. B. (2021). Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(3), 745-754. https://doi.org/10.35414/akufemubid.873404
AMA Elçioğlu EB. Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. June 2021;21(3):745-754. doi:10.35414/akufemubid.873404
Chicago Elçioğlu, Elif Begüm. “Polaritonic Behaviors of SiC, CBN and GaN for Spectrally-Selective Nano-Optics Applications”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, no. 3 (June 2021): 745-54. https://doi.org/10.35414/akufemubid.873404.
EndNote Elçioğlu EB (June 1, 2021) Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 3 745–754.
IEEE E. B. Elçioğlu, “Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 3, pp. 745–754, 2021, doi: 10.35414/akufemubid.873404.
ISNAD Elçioğlu, Elif Begüm. “Polaritonic Behaviors of SiC, CBN and GaN for Spectrally-Selective Nano-Optics Applications”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/3 (June 2021), 745-754. https://doi.org/10.35414/akufemubid.873404.
JAMA Elçioğlu EB. Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:745–754.
MLA Elçioğlu, Elif Begüm. “Polaritonic Behaviors of SiC, CBN and GaN for Spectrally-Selective Nano-Optics Applications”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 21, no. 3, 2021, pp. 745-54, doi:10.35414/akufemubid.873404.
Vancouver Elçioğlu EB. Polaritonic Behaviors of SiC, cBN and GaN for Spectrally-Selective Nano-Optics Applications. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(3):745-54.