Research Article
BibTex RIS Cite

An Easily Optimizable Frequency Selective Absorber Design for X-Band

Year 2022, Volume: 22 Issue: 1, 136 - 141, 28.02.2022
https://doi.org/10.35414/akufemubid.823419

Abstract

In this paper, a novel frequency selective absorber surface (FSAS) is designed for electromagnetic and radio frequency interference reduction and for to use in stealth technology in X-band (8–12 GHz). At the proposed FSAS, minimum 10 dB reflection loss is achieved for the incidence angles up to 30 degrees. Lumped resistors are inserted into periodic conduction geometries to achieve absorption frequency behavior. Equivalent circuit model of periodic geometries is used in the design and optimization stages. The main advantage of the design is its resonance frequency can easily be optimized by one parameter which controls the equivalent capacitance. In order to achieve this goal, a novel FSAS geometry has been designed in which equivalent capacity is dominant in determining the resonant frequency of the surface.

References

  • Costa, F., Monorchio, A., and Manara, G., 2009. An equivalent circuit model of frequency selective surfaces embedded within dielectric layers. Antennas and Propagation Society International Symposium, 2009. APSURSI’09. IEEE, 1–4.
  • Costa, F., Monorchio, and A., Manara, G., 2010. Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces. IEEE Transactions on Antennas and Propagation, 58-5, 1551–58.
  • Du Toit, L. J., and Cloete, J. H., 1996. Electric screen Jauman absorber design algorithms. IEEE Transactions on Microwave Theory and Techniques. 44-12, 2238–2245.
  • Fante, R. L., and Mccormack, M. T., 1988. Reflection properties of the Salisbury screen. IEEE Transactions on Antennas and Propagation. 36-10, 1443–1454.
  • Ghosh, S., and Srivastava, K. V., 2014. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters. 14, 511-514.
  • Joozdani, M. Z., and Amirhosseini, M. K., 2016. Wideband Absorber with Combination of Plasma and Resistive Frequency Selective Surface. IEEE Transactions on Plasma Science. 44-12, 3254–3261.
  • Kong, P., X. W. Yu, M. Y. Zhao, Y. He, L. Miao, ve Jiang, J. J., 2015. Switchable Frequency Selective Surfaces Absorber/Reflector for Wideband Applications. Journal of Electromagnetic Waves and Applications, 29-11, 1473–85.
  • Langley, R. J., and Parker, E. A., 1982. Equivalent circuit model for arrays of square loops. Electronics Letters. 18-7, 294–296.
  • Lee, C. K., and Langley, R. J., 1985. Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence. IEE Proceedings H (Microwaves, Antennas and Propagation), 132-6, 395–399.
  • Lopatin, A. V., Kazantsev, Y. N., Kazantseva, N. E., Apletalin, V. N., Mal’tsev, V. P., Shatrov, A. D., & Saha, P, 2008. Radio absorbers based on magnetic polymer composites and frequency-selective surfaces. Journal of Communications Technology and Electronics. 53-9, 1114–1122.
  • Munk, B. A., 2000, Frequency Selective Surfaces - Theory and Design, John Wiley and Sons. Inc.
  • Munk, B. A., Munk, P., & Pryor, J., 2007. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Transactions on Antennas and Propagation, 55-1, 186–93.
  • Panaretos, A. H., Brocker, D. E., & Werner, D. H., 2015. Ultra-Thin Absorbers Comprised by Cascaded High-Impedance and Frequency Selective Surfaces. IEEE Antennas and Wireless Propagation Letters, 14, 1089–92.
  • Panwar, R., Puthucheri, S., Agarwala, V., and Singh, D., 2015. Fractal Frequency-Selective Surface Embedded Thin Broadband Microwave Absorber Coatings Using Heterogeneous Composites. IEEE Transactions on Microwave Theory and Techniques. 63-8, 2438–2448.
  • Zabri, N., Cahill, R., & Schuchinsky, 2014. Polarisation Independent Resistively Loaded Frequency Selective Surface Absorber with Optimum Oblique Incidence Performance. IET Microwaves Antennas & Propagation, 8-14, 1198–1203.
  • Sohrab, A. P., & Atlasbaf, Z., 2013. A Circuit Analog Absorber with Optimum Thickness and Response in X-Band. IEEE Antennas and Wireless Propagation Letters, 12-2, 276–79.
  • Sun, L., Cheng, H., Zhou, Y., and Wang, J., 2012. Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas and Wireless Propagation Letters. 11, 675–677.
  • Taylor, P. S., Parker, E. A., and Batchelor, J. C., 2011. An active annular ring frequency selective surface. IEEE Transactions on Antennas and Propagation, 59-9, 3265–3271.
  • Yang, Z., Luo, F., Zhou, W., Jia, H., & Zhu, D., 2017. Design of a thin and broadband microwave absorber using double layer frequency selective surface. Journal of Alloys and Compounds. 699, 534–539.
  • Zadeh, A. K., and Karlsson, A., 2009. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Transactions on Antennas and Propagation. 57- 8, 2307–2314.

Eniyilemesi X-Bandında Kolaylıkla Gerçekleştirilebilen Frekans Seçici Soğurucu Yüzey Tasarımı

Year 2022, Volume: 22 Issue: 1, 136 - 141, 28.02.2022
https://doi.org/10.35414/akufemubid.823419

Abstract

Bu çalışmada, X-bandında (8–12 GHz), elektromanyetik ve radyo frekansı girişim etkilerini azaltma ve görünmezlik teknolojisinde kullanılmak üzere yeni bir frekans seçici soğurucu yüzey (FSSY) tasarımı anlatılmaktadır. Periyodik geometrilerin toplu parametreli dirençlerle beraber kullanması ile soğurucu yüzey davranışı elde edilmiştir. Önerilen FSSY geometrisi 30 derecelik kadar geliş açısına kadar üzerine gelen elektromanyetik dalgaları minimum 10 dB zayıflatarak yansıtmaktadır. Eşdeğer devre modeli tasarım ve eniyileme aşamalarında etkin bir şekilde kullanılmıştır. Önerilen FSSY geometrisinin rezonans frekansının eniyilemesi sadece bir parametresinin değerinin değiştirilmesi ile X-bandı içinde kolaylıkla gerçekleştirilebilmektedir. Bu özellik, eşdeğer devre kapasitesi rezonans frekansı üzerindeki etkisi güçlü olan bir tasarım ile gerçekleştirilmiştir. Tasarımların benzetimi Ansoft HFSS v.19.1 yazılımı ile gerçekleştirilmiştir.

References

  • Costa, F., Monorchio, A., and Manara, G., 2009. An equivalent circuit model of frequency selective surfaces embedded within dielectric layers. Antennas and Propagation Society International Symposium, 2009. APSURSI’09. IEEE, 1–4.
  • Costa, F., Monorchio, and A., Manara, G., 2010. Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces. IEEE Transactions on Antennas and Propagation, 58-5, 1551–58.
  • Du Toit, L. J., and Cloete, J. H., 1996. Electric screen Jauman absorber design algorithms. IEEE Transactions on Microwave Theory and Techniques. 44-12, 2238–2245.
  • Fante, R. L., and Mccormack, M. T., 1988. Reflection properties of the Salisbury screen. IEEE Transactions on Antennas and Propagation. 36-10, 1443–1454.
  • Ghosh, S., and Srivastava, K. V., 2014. An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory. IEEE Antennas and Wireless Propagation Letters. 14, 511-514.
  • Joozdani, M. Z., and Amirhosseini, M. K., 2016. Wideband Absorber with Combination of Plasma and Resistive Frequency Selective Surface. IEEE Transactions on Plasma Science. 44-12, 3254–3261.
  • Kong, P., X. W. Yu, M. Y. Zhao, Y. He, L. Miao, ve Jiang, J. J., 2015. Switchable Frequency Selective Surfaces Absorber/Reflector for Wideband Applications. Journal of Electromagnetic Waves and Applications, 29-11, 1473–85.
  • Langley, R. J., and Parker, E. A., 1982. Equivalent circuit model for arrays of square loops. Electronics Letters. 18-7, 294–296.
  • Lee, C. K., and Langley, R. J., 1985. Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence. IEE Proceedings H (Microwaves, Antennas and Propagation), 132-6, 395–399.
  • Lopatin, A. V., Kazantsev, Y. N., Kazantseva, N. E., Apletalin, V. N., Mal’tsev, V. P., Shatrov, A. D., & Saha, P, 2008. Radio absorbers based on magnetic polymer composites and frequency-selective surfaces. Journal of Communications Technology and Electronics. 53-9, 1114–1122.
  • Munk, B. A., 2000, Frequency Selective Surfaces - Theory and Design, John Wiley and Sons. Inc.
  • Munk, B. A., Munk, P., & Pryor, J., 2007. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Transactions on Antennas and Propagation, 55-1, 186–93.
  • Panaretos, A. H., Brocker, D. E., & Werner, D. H., 2015. Ultra-Thin Absorbers Comprised by Cascaded High-Impedance and Frequency Selective Surfaces. IEEE Antennas and Wireless Propagation Letters, 14, 1089–92.
  • Panwar, R., Puthucheri, S., Agarwala, V., and Singh, D., 2015. Fractal Frequency-Selective Surface Embedded Thin Broadband Microwave Absorber Coatings Using Heterogeneous Composites. IEEE Transactions on Microwave Theory and Techniques. 63-8, 2438–2448.
  • Zabri, N., Cahill, R., & Schuchinsky, 2014. Polarisation Independent Resistively Loaded Frequency Selective Surface Absorber with Optimum Oblique Incidence Performance. IET Microwaves Antennas & Propagation, 8-14, 1198–1203.
  • Sohrab, A. P., & Atlasbaf, Z., 2013. A Circuit Analog Absorber with Optimum Thickness and Response in X-Band. IEEE Antennas and Wireless Propagation Letters, 12-2, 276–79.
  • Sun, L., Cheng, H., Zhou, Y., and Wang, J., 2012. Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas and Wireless Propagation Letters. 11, 675–677.
  • Taylor, P. S., Parker, E. A., and Batchelor, J. C., 2011. An active annular ring frequency selective surface. IEEE Transactions on Antennas and Propagation, 59-9, 3265–3271.
  • Yang, Z., Luo, F., Zhou, W., Jia, H., & Zhu, D., 2017. Design of a thin and broadband microwave absorber using double layer frequency selective surface. Journal of Alloys and Compounds. 699, 534–539.
  • Zadeh, A. K., and Karlsson, A., 2009. Capacitive circuit method for fast and efficient design of wideband radar absorbers. IEEE Transactions on Antennas and Propagation. 57- 8, 2307–2314.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bora Döken 0000-0002-1874-3844

Publication Date February 28, 2022
Submission Date November 9, 2020
Published in Issue Year 2022 Volume: 22 Issue: 1

Cite

APA Döken, B. (2022). An Easily Optimizable Frequency Selective Absorber Design for X-Band. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 136-141. https://doi.org/10.35414/akufemubid.823419
AMA Döken B. An Easily Optimizable Frequency Selective Absorber Design for X-Band. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2022;22(1):136-141. doi:10.35414/akufemubid.823419
Chicago Döken, Bora. “An Easily Optimizable Frequency Selective Absorber Design for X-Band”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, no. 1 (February 2022): 136-41. https://doi.org/10.35414/akufemubid.823419.
EndNote Döken B (February 1, 2022) An Easily Optimizable Frequency Selective Absorber Design for X-Band. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 1 136–141.
IEEE B. Döken, “An Easily Optimizable Frequency Selective Absorber Design for X-Band”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 1, pp. 136–141, 2022, doi: 10.35414/akufemubid.823419.
ISNAD Döken, Bora. “An Easily Optimizable Frequency Selective Absorber Design for X-Band”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/1 (February 2022), 136-141. https://doi.org/10.35414/akufemubid.823419.
JAMA Döken B. An Easily Optimizable Frequency Selective Absorber Design for X-Band. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:136–141.
MLA Döken, Bora. “An Easily Optimizable Frequency Selective Absorber Design for X-Band”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 1, 2022, pp. 136-41, doi:10.35414/akufemubid.823419.
Vancouver Döken B. An Easily Optimizable Frequency Selective Absorber Design for X-Band. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(1):136-41.