Research Article
BibTex RIS Cite

Ticari Anyon Değiştirme Reçinesinin Cr(VI) Adsorpsiyon Performansı

Year 2023, Volume: 23 Issue: 2, 306 - 315, 03.05.2023

Abstract

Ticari Eichrom 1x4 anyon değişim reçinesi kullanılarak sulu çözeltilerden krom (VI) kesikli sistem
sorpsiyonu, değişen pH, sıcaklık ve temas süresi, adsorban dozajı, desorpsiyon çalışması ve başlangıç
Cr (VI) konsantrasyonunda incelenmiştir. Anyon değiştirici reçine (AER) yoluyla Cr (VI) sorpsiyonu için
ideal pH aralığı 2,0-6,0 olarak bulundu. Reçine tarafından Cr (VI) emiliminin kinetiği, ikinci dereceden
kinetik modelden sonra geldi. AER için en büyük krom sorpsiyonu 10 dakikada ortaya çıkmıştır.
Langmuir, Freundlich ve Redlich-Peterson modelleri ile sorpsiyon izotermleri incelenmiştir. AER
yoluyla krom sorpsiyonu için optimum izotermal model Langmuir izotermidir. Ayrıca entropi değişimi
(ΔSo), serbest enerji değişimi (ΔGo) ve entalpi değişimi (ΔHo) gibi sorpsiyon termodinamik
parametreleri de incelenmiştir. Sıcaklıktaki bir artış, AER tarafından Cr(VI) sorpsiyonu için denge sabiti
(Kc) değerinin yükselmesine neden olmuştur.

References

  • Abdel-Azzem, M., Yousef, U.S., Ragab, A.Z.-E., 2010. A new modified electrode based on electrochemical oxidation of 1-amino-5,6,7,8-tetrahydronaphthalene in acetonitrile, Electrochimica Acta, 55, 1509-1518. DOI:10.1016/j.electacta.2009.09.04
  • Alonso, A.I., Galán B., González, M., Ortiz, I. 1999. Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr (VI) from a galvanic process wastewaters. Industrial & Engineering Chemistry Research, 38,1666-1675. DOI:10.1021/ie980288p
  • Altundas, R., Demir, Ü., Ekinci, D., Horasan, N., 2000. The electrochemical oxidation of 2-amino-3-cyano-4-phenylthiophene: evidence for a new class of photoluminescent material. Journal of Electroanalytical Chemistry, 484, 101-106. DOI:10.1016/S0022-0728(00)00036-X
  • Amiri, M., Bélanger, D., Donzel, N., Shul, G., 2021 Aqueous electrochemical energy storage system based on phenanthroline- and anthraquinone-modified carbon electrodes. Electrochimica Acta, 390, 138862. DOI:10.1016/j.electacta.2021.138862
  • Arslan, G., Edebali, S., Pehlivan, E., 2010. Physical and chemical factors affecting the adsorption of Cr (VI) via humic acids extracted from brown coals. Desalination, 255, 223-231. DOI:org/10.1016/j.desal.2010.01.006
  • Atmaca, U., Ekinci, D., Kudas, Z., Saruhan, T., Celik, M., 2020. Electrocatalytic Reduction of Oxygen at Glassy Carbon Electrodes Coated with Diazonium‐derived Porphyrin/Metalloporphyrin Films. Electroanalysis, 32, 6, 1379-1390. DOI:10.1002/elan.201900707
  • ATSDR, 2000, Agency for Toxic Substances and Disease Registry, Division of Toxicology/Toxicology Information Branch (ATSDR), Toxicological profile for chromium, ATSDR, Atlanta, USA, 1–157.
  • Aurelia, M., Mariana, C., Maria, C., 1989. Glucose sensor: polypyrrole-glucose oxidase electrode in the presence of p-benzoquinone. Electrochimica Acta, 37, 11, 1987–1992.
  • Barassi, G., Valdés, A., Araneda, C., Basualto, C., Sapag, J., Tapia, C., & Valenzuela, F., 2009. Cr (VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: kinetics and thermodynamics analysis. Journal of hazardous materials, 172, 262-268. DOI:10.1016/j.jhazmat.2009.06.167
  • Barrière, F., & Downard, A. J., 2008. Covalent modification of graphitic carbon substrates by non-electrochemical methods. Journal of Solid-State Electrochemistry, 12, 1231-1244. DOI:10.1007/s10008-008-0526-2
  • Cengeloğlu Y., Tor A., Kir E., Ersöz M., 2003. Transport of hexavalent chromium through anion-exchange membranes. Desalination, 154, 239-246. DOI:10.1016/S0011-9164(03)80039-5
  • Chen, H., Ju, H., Sun. H., 1996. Properties of poly-β-aminoanthraquinone modified carbon fiber electrode as a basis for hemoglobin biosensors. Analytica Chimica Acta, 327, 125-132. DOI:10.1016/0003-2670(96)00067-0
  • Dalkıran, B. & Kaçar, C., 2020. Amin Fonksiyonlu Karbon Nanotüp, Kalay Oksit Nanopartikül ve Diamin Oksidaz Temelli Triptamin Biyosensörü. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 631-641. DOI:10.29130/dubited.602777
  • Demir, U., Ekinci, D., Pak, F., Tümer, F., 2007. A Mechanistic and Characteristic Investigation of Electrooxidation of 2‐Amino‐3‐cyano‐4‐methylthiophene. Macromolecular Chemistry and Physics, 208, 2367-2374. DOI:10.1002/macp.200700276
  • Demir, Ü., Ekinci, D., Tümer, F., 2004. Mechanistic study of the oxidation of 2-amino-3-cyano-4-naphtylthiophene by cyclic voltammetry and UV–Vis–NIR absorption spectroscopy. Journal of Electroanalytical Chemistry, 562, 167–172. DOI:10.1016/j.jelechem.2003.09.002
  • Diao, F., Jansen, U. C., Qvortrup, K., Tanner, D., Ulstrup, J., Yan, X., Xiao, X., 2021. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochemistry Communications, 124, 106962. DOI:10.1016/j.elecom.2021.10696
  • Diaz, A. F, Logan, J. A., 1980. Electroactive polyaniline films, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111, 111-114
  • Dragan, S., M. Dınu, V., Vlad C.D., 2003. Ion‐exchange resins. II. Acrylamide crosslinked copolymers as precursors for some ion exchangers. Journal of applied polymer science, 89, 2701-2707. DOI:org/10.1002/app.12393
  • Edebalı, S., Pehlıvan, E., 2010. Evaluation of Amberlite IRA96 and Dowex 1× 8 ion-exchange resins for the removal of Cr (VI) from aqueous solution. Chemical Engineering Journal, 161, 161–166. DOI:10.1016/j.cej.2010.04.059
  • Ekinci, D., Turhan, F., Pak, F., Kudaş, Z., Yeşildağ, A., 2012. Electrochemical synthesis and characterization of poly (9-benzylfluorene). Polymer bulletin, 68, 1677-1687. DOI:10.1007/s00289-011-0667-9
  • Ekinci, D., Ünal, Ö.F., Yeşildağ, A., 2018. Synthesis of gold nanoparticles on diazonium generated heteroaryl films and their electrocatalytic activities. Electrochimica Acta, 290, 474-486. DOI:10.1016/j.electacta.2018.09.083
  • Freundlich, H., 1907. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57, 385-470. DOI:10.1515/zpch-1907-5723
  • Genies, E.M., Marchesiello ,M., 1992. Glucose sensor: polypyrrole-glucose oxidase electrode in the presence of p-benzoquinone. Electrochimica Acta, 37, 1987–1992. DOI:org/10.1016/0013-4686(92)87113-E
  • Gode, F., Pehlivan, E., 2005. Removal of Cr (VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials, B119, 175-182. DOI:10.1016/j.jhazmat.2004.12.004
  • Gryko, D., Kadish, K. M., Rybicka-Jasińska, K., Shan, W., Zawada, K., 2016. Porphyrins as photoredox catalysts: Experimental and theoretical studies. Journal of the American Chemical Society, 138, 15451-15458. DOI.org/10.1021/jacs.6b09036
  • Gu, X., Li, X., Wu, S., Shi, J., Jiang, G., & Tian, S., 2016. A sensitive hydrazine hydrate sensor based on a mercaptomethyl-terminated trinuclear Ni (II) complex modified gold electrode. Rsc Advances, 6, 8070-8078. DOI:10.1039/C5RA23809A
  • Guilard, R., Smith, K. M., Kadish, K., 2000. The Porphyrin Handbook, 3. Elsevier.
  • Hafıane, A., Lemordant, D., Dhahbı, M., 2000. Removal of hexavalent chromium by nanofiltration. Desalination, 130, 305-312. DOI:10.1016/S0011-9164(00)00094-1
  • Hayashi, N., Matsumura D., Hoshina, H., Ueki, Y., Tsuji, T., Chen, J., Seko, N., 2021. Chromium (VI) adsorption–reduction using a fibrous amidoxime-grafted adsorbent. Separation and Purification Technology, 277, 119536. DOI:10.1016/j.seppur.2021.119536
  • Ho, Y-S., Mckay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451-465. DOI:10.1016/S0032-9592(98)00112-5
  • Hossain, M.S., Tryk, D., Yeager, E., 1989. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochimica Acta, 34, 1733–1737. DOİ.org/10.1016/0013-4686(89)85057-1
  • Huang, L., Ou Z., Boving, T. B., Tyson J., Xing B., 2009. Sorption of copper by chemically modified aspen wood fibers. Chemosphere, 76, 1056–1061. DOI:10.1016/j.chemosphere.2009.04.030
  • Jin, M., Liu, Y., Zhang, X., Wang, J., Zhang, S., Wang, G., Zhang, Y., Yin, H., Zhang, H., Zhao, H., 2021. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts. Experimental and theoretical studies., Applied Catalysis B: Environmental, 298, 120545. DOI:10.1016/j.apcatb.2021.120545
  • Khezamı, L., Capart, R., 2005. Removal of chromium (VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. Journal of hazardous materials, 123, 223-231. DOI:10.1016/j.jhazmat.2005.04.012
  • Kitani, A., Yano, J., Kunai, A., Saski, K., 1987. A conducting polymer derived from para-aminodiphenylamine Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 221, 69–82. DOI:org/10.1016/0022-0728(87)80246-2
  • Kobya, M., 2004. Adsorption, kinetic and equilibrium studies of Cr (VI) by hazelnut shell activated carbon. Adsorption Science & Technology, 22, 51-64. DOI:10.1260/026361704323150999
  • Korngold, E., Belayev, N., Aronov, L., 2003. Removal of chromates from drinking water by anion exchangers. Separation and Purification Technology, 33, 179-187. DOI:org/10.1016/S1383-5866(03)00006-6
  • Langmuır, I., 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal Of the American Chemical Society, 38, 2221–2295. DOI:10.1021/ja02268a002
  • Laviron, E.J.J. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 19-28.
  • Lıu, R., Tang, H., Zhang, B., 1999. Removal of Cu (II), Zn (II), Cd (III) and Hg (II) from waste water by poly (acrylaminophosphonic)-type chelating fiber. Chemosphere, 38, 3169-3179. DOI:10.1016/S0045-6535(98)00506-2
  • Li, X., Sun, H., Sun, X., 2021. Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries. Polymer, 234, 124245
  • Marcu, C., Varodi, C., Balla, A., 2021. Adsorption Kinetics of Chromium (VI) from Aqueous Solution Using an Anion Exchange Resin. Analytical Letters, 1-2, 54. DOI:10.1080/00032719.2020.1731523
  • Park, H-J., Na C-K., 2006. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property. Journal of Colloid and Interface Science, 301, 46–54. DOI:10.1016/j.jcis.2006.05.003
  • Pehlivan, E., Çetin, S., 2009. Sorption of Cr (VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer. Journal of Hazardous Materials, 163, 448-453. DOI:10.1016/j.jhazmat.2008.06.115
  • Pournaghi-Azar, M.H., Sabzi, R., 2003. Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine. Journal of Electroanalytical Chemistry, 543, 115-125. DOI.org/10.1016/S0022-0728(02)01480-8
  • Redlıch, O. J. D. L., Peterson D. L., 1959. A useful adsorption isotherm. Journal of physical chemistry, 63, 1024. DOI:org/10.1021/j150576a611
  • Rengaraj, S., Joo, C. K., Kim, Y., Yi J., 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of hazardous materials., B10 2257–275. DOI:10.1016/S0304-3894(03)00209-7
  • Sereno, L., Silber, J.J., Vettorazzi, N., 1981. Anodic oxidation of 1-naphthylamine in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 125, 459-475
  • Sujana, M. G., Thaku, R. S. r, Rao, S. B., 1998. Removal of fluoride from aqueous solution by using alum sludge. Journal of Colloid and Interface Science. DOI:10.1006/jcis.1998.5611
  • Tor, A., 2006. Removal of fluoride from an aqueous solution by using montmorillonite. Desalination., 201, 267–276. DOI:10.1016/j.jhazmat.2006.04.063
  • Tor, A., Büyükerkek T., Çengelolu, Y., Ersöz, M., 2005. Simultaneous recovery of Cr (III) and Cr (VI) from the aqueous phase with ion-exchange membranes. Desalination., 171, 233-241. DOI:10.1016/j.desal.2004.02.106
  • Tor, A., Cengeloglu, Y., 2006. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. Journal of hazardous materials., B138, 409–415. DOI:10.1016/j.jhazmat.2006.04.063
  • US EPA, 1990. Environmental Protection Agency, Environmental Pollution Control Alternatives, EPA/625/5-90/025, EPA/625/4-89/023, Cincinnati, US.
  • Venkateswaran, P., Palanıvelu, K., 2004. Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution. Separation and purification technology., 40, 279-284. DOI:10.1016/j.seppur.2004.03.005
  • Venkateswaran, P., Palanıvelu, K., 2005. Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometallurgy., 78, 107-115. DOI:10.1016/j.hydromet.2004.10.021
  • Yılmaz A., 2008. Kinetic analysis of chromium (VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix [4] arene dioxaoctylamide derivative. Separation and Purification Technology., 59, 1-8. DOI: 10.1016/j.seppur.2007.05.017
  • Zhang, Q., Zhang, S., Chen, S., Li, P., Qin T., Yuan, S., 2008. Preparation and characterization of a strong basic anion exchanger by radiation-induced grafting of styrene onto poly (tetrafluoroethylene) fiber. Journal of colloid and interface science., 322, 421–428. DOI:10.1016/j.jcis.2008.03.049
  • Zhao, D., Sengupta, A.K., Stewart, L., 1998. Selective removal of Cr (VI) oxyanions with a new anion exchanger. Industrial & engineering chemistry research., 37, 4383–4387. DOI:10.1021/ie980227r
  • Zhao, M., Huang L., Arulmani, S.R.B., Yan J., Wu L., Tao W., Zhang H. and Xiao T., 2022. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review, Nanomaterials, 12-13, 2256. DOI:10.3390/nano1213225

Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin

Year 2023, Volume: 23 Issue: 2, 306 - 315, 03.05.2023

Abstract

Chromium (VI) batch system sorption from aqueous solutions by use of commercial Eichrom 1x4 anion
exchange resin was studied at varying pH, temperature, and contact time, adsorbent dosage,
desorption study, and starting Cr (VI) concentration. The ideal pH range for Cr (VI) sorption via anion
exchange resin (AER) was found as 2.0-6.0. The kinetic of Cr (VI) sorption by resin came after the secondorder kinetic model. The greatest chromium sorption emerged at 10 min for AER. The sorption
isotherms were investigated with Langmuir, Freundlich and Redlich-Peterson models. The optimum
isothermal model for chromium sorption via AER was the Langmuir isotherm. Moreover, the sorption
thermodynamic parameters like entropy change (ΔSo), free energy change (ΔGo), and enthalpy change
(ΔHo) were also investigated. A rise in the temperature has resulted in a rise of the equilibrium constant
(Kc) value for the Cr (VI) sorption by AER.

References

  • Abdel-Azzem, M., Yousef, U.S., Ragab, A.Z.-E., 2010. A new modified electrode based on electrochemical oxidation of 1-amino-5,6,7,8-tetrahydronaphthalene in acetonitrile, Electrochimica Acta, 55, 1509-1518. DOI:10.1016/j.electacta.2009.09.04
  • Alonso, A.I., Galán B., González, M., Ortiz, I. 1999. Experimental and theoretical analysis of a nondispersive solvent extraction pilot plant for the removal of Cr (VI) from a galvanic process wastewaters. Industrial & Engineering Chemistry Research, 38,1666-1675. DOI:10.1021/ie980288p
  • Altundas, R., Demir, Ü., Ekinci, D., Horasan, N., 2000. The electrochemical oxidation of 2-amino-3-cyano-4-phenylthiophene: evidence for a new class of photoluminescent material. Journal of Electroanalytical Chemistry, 484, 101-106. DOI:10.1016/S0022-0728(00)00036-X
  • Amiri, M., Bélanger, D., Donzel, N., Shul, G., 2021 Aqueous electrochemical energy storage system based on phenanthroline- and anthraquinone-modified carbon electrodes. Electrochimica Acta, 390, 138862. DOI:10.1016/j.electacta.2021.138862
  • Arslan, G., Edebali, S., Pehlivan, E., 2010. Physical and chemical factors affecting the adsorption of Cr (VI) via humic acids extracted from brown coals. Desalination, 255, 223-231. DOI:org/10.1016/j.desal.2010.01.006
  • Atmaca, U., Ekinci, D., Kudas, Z., Saruhan, T., Celik, M., 2020. Electrocatalytic Reduction of Oxygen at Glassy Carbon Electrodes Coated with Diazonium‐derived Porphyrin/Metalloporphyrin Films. Electroanalysis, 32, 6, 1379-1390. DOI:10.1002/elan.201900707
  • ATSDR, 2000, Agency for Toxic Substances and Disease Registry, Division of Toxicology/Toxicology Information Branch (ATSDR), Toxicological profile for chromium, ATSDR, Atlanta, USA, 1–157.
  • Aurelia, M., Mariana, C., Maria, C., 1989. Glucose sensor: polypyrrole-glucose oxidase electrode in the presence of p-benzoquinone. Electrochimica Acta, 37, 11, 1987–1992.
  • Barassi, G., Valdés, A., Araneda, C., Basualto, C., Sapag, J., Tapia, C., & Valenzuela, F., 2009. Cr (VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: kinetics and thermodynamics analysis. Journal of hazardous materials, 172, 262-268. DOI:10.1016/j.jhazmat.2009.06.167
  • Barrière, F., & Downard, A. J., 2008. Covalent modification of graphitic carbon substrates by non-electrochemical methods. Journal of Solid-State Electrochemistry, 12, 1231-1244. DOI:10.1007/s10008-008-0526-2
  • Cengeloğlu Y., Tor A., Kir E., Ersöz M., 2003. Transport of hexavalent chromium through anion-exchange membranes. Desalination, 154, 239-246. DOI:10.1016/S0011-9164(03)80039-5
  • Chen, H., Ju, H., Sun. H., 1996. Properties of poly-β-aminoanthraquinone modified carbon fiber electrode as a basis for hemoglobin biosensors. Analytica Chimica Acta, 327, 125-132. DOI:10.1016/0003-2670(96)00067-0
  • Dalkıran, B. & Kaçar, C., 2020. Amin Fonksiyonlu Karbon Nanotüp, Kalay Oksit Nanopartikül ve Diamin Oksidaz Temelli Triptamin Biyosensörü. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 631-641. DOI:10.29130/dubited.602777
  • Demir, U., Ekinci, D., Pak, F., Tümer, F., 2007. A Mechanistic and Characteristic Investigation of Electrooxidation of 2‐Amino‐3‐cyano‐4‐methylthiophene. Macromolecular Chemistry and Physics, 208, 2367-2374. DOI:10.1002/macp.200700276
  • Demir, Ü., Ekinci, D., Tümer, F., 2004. Mechanistic study of the oxidation of 2-amino-3-cyano-4-naphtylthiophene by cyclic voltammetry and UV–Vis–NIR absorption spectroscopy. Journal of Electroanalytical Chemistry, 562, 167–172. DOI:10.1016/j.jelechem.2003.09.002
  • Diao, F., Jansen, U. C., Qvortrup, K., Tanner, D., Ulstrup, J., Yan, X., Xiao, X., 2021. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochemistry Communications, 124, 106962. DOI:10.1016/j.elecom.2021.10696
  • Diaz, A. F, Logan, J. A., 1980. Electroactive polyaniline films, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111, 111-114
  • Dragan, S., M. Dınu, V., Vlad C.D., 2003. Ion‐exchange resins. II. Acrylamide crosslinked copolymers as precursors for some ion exchangers. Journal of applied polymer science, 89, 2701-2707. DOI:org/10.1002/app.12393
  • Edebalı, S., Pehlıvan, E., 2010. Evaluation of Amberlite IRA96 and Dowex 1× 8 ion-exchange resins for the removal of Cr (VI) from aqueous solution. Chemical Engineering Journal, 161, 161–166. DOI:10.1016/j.cej.2010.04.059
  • Ekinci, D., Turhan, F., Pak, F., Kudaş, Z., Yeşildağ, A., 2012. Electrochemical synthesis and characterization of poly (9-benzylfluorene). Polymer bulletin, 68, 1677-1687. DOI:10.1007/s00289-011-0667-9
  • Ekinci, D., Ünal, Ö.F., Yeşildağ, A., 2018. Synthesis of gold nanoparticles on diazonium generated heteroaryl films and their electrocatalytic activities. Electrochimica Acta, 290, 474-486. DOI:10.1016/j.electacta.2018.09.083
  • Freundlich, H., 1907. Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57, 385-470. DOI:10.1515/zpch-1907-5723
  • Genies, E.M., Marchesiello ,M., 1992. Glucose sensor: polypyrrole-glucose oxidase electrode in the presence of p-benzoquinone. Electrochimica Acta, 37, 1987–1992. DOI:org/10.1016/0013-4686(92)87113-E
  • Gode, F., Pehlivan, E., 2005. Removal of Cr (VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials, B119, 175-182. DOI:10.1016/j.jhazmat.2004.12.004
  • Gryko, D., Kadish, K. M., Rybicka-Jasińska, K., Shan, W., Zawada, K., 2016. Porphyrins as photoredox catalysts: Experimental and theoretical studies. Journal of the American Chemical Society, 138, 15451-15458. DOI.org/10.1021/jacs.6b09036
  • Gu, X., Li, X., Wu, S., Shi, J., Jiang, G., & Tian, S., 2016. A sensitive hydrazine hydrate sensor based on a mercaptomethyl-terminated trinuclear Ni (II) complex modified gold electrode. Rsc Advances, 6, 8070-8078. DOI:10.1039/C5RA23809A
  • Guilard, R., Smith, K. M., Kadish, K., 2000. The Porphyrin Handbook, 3. Elsevier.
  • Hafıane, A., Lemordant, D., Dhahbı, M., 2000. Removal of hexavalent chromium by nanofiltration. Desalination, 130, 305-312. DOI:10.1016/S0011-9164(00)00094-1
  • Hayashi, N., Matsumura D., Hoshina, H., Ueki, Y., Tsuji, T., Chen, J., Seko, N., 2021. Chromium (VI) adsorption–reduction using a fibrous amidoxime-grafted adsorbent. Separation and Purification Technology, 277, 119536. DOI:10.1016/j.seppur.2021.119536
  • Ho, Y-S., Mckay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451-465. DOI:10.1016/S0032-9592(98)00112-5
  • Hossain, M.S., Tryk, D., Yeager, E., 1989. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochimica Acta, 34, 1733–1737. DOİ.org/10.1016/0013-4686(89)85057-1
  • Huang, L., Ou Z., Boving, T. B., Tyson J., Xing B., 2009. Sorption of copper by chemically modified aspen wood fibers. Chemosphere, 76, 1056–1061. DOI:10.1016/j.chemosphere.2009.04.030
  • Jin, M., Liu, Y., Zhang, X., Wang, J., Zhang, S., Wang, G., Zhang, Y., Yin, H., Zhang, H., Zhao, H., 2021. Selective electrocatalytic hydrogenation of nitrobenzene over copper-platinum alloying catalysts. Experimental and theoretical studies., Applied Catalysis B: Environmental, 298, 120545. DOI:10.1016/j.apcatb.2021.120545
  • Khezamı, L., Capart, R., 2005. Removal of chromium (VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. Journal of hazardous materials, 123, 223-231. DOI:10.1016/j.jhazmat.2005.04.012
  • Kitani, A., Yano, J., Kunai, A., Saski, K., 1987. A conducting polymer derived from para-aminodiphenylamine Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 221, 69–82. DOI:org/10.1016/0022-0728(87)80246-2
  • Kobya, M., 2004. Adsorption, kinetic and equilibrium studies of Cr (VI) by hazelnut shell activated carbon. Adsorption Science & Technology, 22, 51-64. DOI:10.1260/026361704323150999
  • Korngold, E., Belayev, N., Aronov, L., 2003. Removal of chromates from drinking water by anion exchangers. Separation and Purification Technology, 33, 179-187. DOI:org/10.1016/S1383-5866(03)00006-6
  • Langmuır, I., 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal Of the American Chemical Society, 38, 2221–2295. DOI:10.1021/ja02268a002
  • Laviron, E.J.J. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 19-28.
  • Lıu, R., Tang, H., Zhang, B., 1999. Removal of Cu (II), Zn (II), Cd (III) and Hg (II) from waste water by poly (acrylaminophosphonic)-type chelating fiber. Chemosphere, 38, 3169-3179. DOI:10.1016/S0045-6535(98)00506-2
  • Li, X., Sun, H., Sun, X., 2021. Polysulfone grafted with anthraquinone-hydroanthraquinone redox as a flexible membrane electrode for aqueous batteries. Polymer, 234, 124245
  • Marcu, C., Varodi, C., Balla, A., 2021. Adsorption Kinetics of Chromium (VI) from Aqueous Solution Using an Anion Exchange Resin. Analytical Letters, 1-2, 54. DOI:10.1080/00032719.2020.1731523
  • Park, H-J., Na C-K., 2006. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property. Journal of Colloid and Interface Science, 301, 46–54. DOI:10.1016/j.jcis.2006.05.003
  • Pehlivan, E., Çetin, S., 2009. Sorption of Cr (VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer. Journal of Hazardous Materials, 163, 448-453. DOI:10.1016/j.jhazmat.2008.06.115
  • Pournaghi-Azar, M.H., Sabzi, R., 2003. Electrochemical characteristics of a cobalt pentacyanonitrosylferrate film on a modified glassy carbon electrode and its catalytic effect on the electrooxidation of hydrazine. Journal of Electroanalytical Chemistry, 543, 115-125. DOI.org/10.1016/S0022-0728(02)01480-8
  • Redlıch, O. J. D. L., Peterson D. L., 1959. A useful adsorption isotherm. Journal of physical chemistry, 63, 1024. DOI:org/10.1021/j150576a611
  • Rengaraj, S., Joo, C. K., Kim, Y., Yi J., 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of hazardous materials., B10 2257–275. DOI:10.1016/S0304-3894(03)00209-7
  • Sereno, L., Silber, J.J., Vettorazzi, N., 1981. Anodic oxidation of 1-naphthylamine in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 125, 459-475
  • Sujana, M. G., Thaku, R. S. r, Rao, S. B., 1998. Removal of fluoride from aqueous solution by using alum sludge. Journal of Colloid and Interface Science. DOI:10.1006/jcis.1998.5611
  • Tor, A., 2006. Removal of fluoride from an aqueous solution by using montmorillonite. Desalination., 201, 267–276. DOI:10.1016/j.jhazmat.2006.04.063
  • Tor, A., Büyükerkek T., Çengelolu, Y., Ersöz, M., 2005. Simultaneous recovery of Cr (III) and Cr (VI) from the aqueous phase with ion-exchange membranes. Desalination., 171, 233-241. DOI:10.1016/j.desal.2004.02.106
  • Tor, A., Cengeloglu, Y., 2006. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. Journal of hazardous materials., B138, 409–415. DOI:10.1016/j.jhazmat.2006.04.063
  • US EPA, 1990. Environmental Protection Agency, Environmental Pollution Control Alternatives, EPA/625/5-90/025, EPA/625/4-89/023, Cincinnati, US.
  • Venkateswaran, P., Palanıvelu, K., 2004. Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution. Separation and purification technology., 40, 279-284. DOI:10.1016/j.seppur.2004.03.005
  • Venkateswaran, P., Palanıvelu, K., 2005. Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometallurgy., 78, 107-115. DOI:10.1016/j.hydromet.2004.10.021
  • Yılmaz A., 2008. Kinetic analysis of chromium (VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix [4] arene dioxaoctylamide derivative. Separation and Purification Technology., 59, 1-8. DOI: 10.1016/j.seppur.2007.05.017
  • Zhang, Q., Zhang, S., Chen, S., Li, P., Qin T., Yuan, S., 2008. Preparation and characterization of a strong basic anion exchanger by radiation-induced grafting of styrene onto poly (tetrafluoroethylene) fiber. Journal of colloid and interface science., 322, 421–428. DOI:10.1016/j.jcis.2008.03.049
  • Zhao, D., Sengupta, A.K., Stewart, L., 1998. Selective removal of Cr (VI) oxyanions with a new anion exchanger. Industrial & engineering chemistry research., 37, 4383–4387. DOI:10.1021/ie980227r
  • Zhao, M., Huang L., Arulmani, S.R.B., Yan J., Wu L., Tao W., Zhang H. and Xiao T., 2022. Adsorption of Different Pollutants by Using Microplastic with Different Influencing Factors and Mechanisms in Wastewater: A Review, Nanomaterials, 12-13, 2256. DOI:10.3390/nano1213225
There are 59 citations in total.

Details

Primary Language English
Subjects Physical Chemistry
Journal Section Articles
Authors

Faysal Selimoğlu 0000-0003-3798-9054

Early Pub Date April 28, 2023
Publication Date May 3, 2023
Submission Date December 25, 2022
Published in Issue Year 2023 Volume: 23 Issue: 2

Cite

APA Selimoğlu, F. (2023). Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(2), 306-315. https://doi.org/10.35414/akufemubid.1224249
AMA Selimoğlu F. Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. May 2023;23(2):306-315. doi:10.35414/akufemubid.1224249
Chicago Selimoğlu, Faysal. “Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 2 (May 2023): 306-15. https://doi.org/10.35414/akufemubid.1224249.
EndNote Selimoğlu F (May 1, 2023) Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 2 306–315.
IEEE F. Selimoğlu, “Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, pp. 306–315, 2023, doi: 10.35414/akufemubid.1224249.
ISNAD Selimoğlu, Faysal. “Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/2 (May 2023), 306-315. https://doi.org/10.35414/akufemubid.1224249.
JAMA Selimoğlu F. Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:306–315.
MLA Selimoğlu, Faysal. “Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 2, 2023, pp. 306-15, doi:10.35414/akufemubid.1224249.
Vancouver Selimoğlu F. Cr(VI) Adsorption Performance of Commercial Anion Exchange Resin. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(2):306-15.