Research Article
BibTex RIS Cite

Investigation of Antibacterial Properties of Ion-Doped β-Tri-calcium Phosphate Powders Produced via Microwave-Assisted Synthesis Technique

Year 2023, Volume: 23 Issue: 6, 1488 - 1496, 28.12.2023
https://doi.org/10.35414/akufemubid.1250275

Abstract

CaP-based bioceramic materials are widely used in orthopedic applications. β-tri-calcium phosphate (β-TCP) is a bioresorbable member of the CaP-based compounds and can be implemented as putty, coating, powders, granules, etc. depending on the implantation area. β-TCP is usually produced with wet chemical synthesis systems. However, long synthesis durations, processes with multiple steps, and difficulties in controlling the process parameters yield the researches to develop novel production methods. Recently, the microwave-assisted synthesis technique has drawn attention due to its advantages such as being a shorter and more practical experimental procedure. In this study, β-TCP powders were fabricated via the microwave-assisted synthesis method. Ca and P source solutions were prepared, and following their reaction microwave radiation was applied. The obtained product was centrifuged to separate the precipitate, and then this wet part was dried, and finally calcined at 900°C. In this way, Ce3+ and SeO3-2 doped β-TCP powders, which may show antibacterial properties and induce bone regeneration were achieved. Chemical phase analysis with X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS) observations to investigate the microstructure and elemental mapping, immersion in the Simulated Body Fluid (SBF) for 14 days at 37°C to determine the bioactivity behavior, and bacteria interaction studies by using Staphylococcus aureus (S. aureus, ATCC 25923) to evaluate the antibacterial activity of the synthesized powders were done within characterization. Formation of the CaP-based precipitates on the surfaces of the powders depending on immersion in 1X SBF solution showed the bioactive character of the products. Moreover, a reduction in the number of bacterial colonies proved that the ion-doped powders exhibited antibacterial properties.

Project Number

FBA-2021-34751

References

  • Abdulaah, H.A., Al-Ghaban, A.M., Anaee, R.A., Khadom, A.A. ve Kadhim, M.M., 2023. Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: Experimental, biological, theoretical, and electrochemical investigations, Journal of Electrochemical Science and Engineering, 13(1), 115-126.
  • Albulescu, R., Popa, A.-C., Enciu, A.-M., Albulescu, L., Dudau, M., Popescu, I.D., Mihai, S., Codrici, E., Pop, S., Lupu, A.-R., Stan, G.E., Manda, G. ve Tanase, C., 2019. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications, Materials, 12, 3704.
  • Alshemary, A.Z., Muhammed, Y., Salman, N.A., Hussain, R., Motameni, A., Gurbuz, R., Alkaabi, M.H.H. ve Abdolahi, A., 2022. In vitro degradation and bioactivity of antibacterial chromium doped β-tricalcium phosphate bioceramics, Ceramics-Silikáty, 66(3), 347-353.
  • Baino, F. ve Yamaguchi, S., 2020. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges, Biomimetics, 5, 57.
  • Bohner, M., Le Gars Santoni, B. ve Döbelin, N., 2020. β-tricalcium phosphate for bone substitution: Synthesis and properties, Acta Biomaterialia, 113, 23-41.
  • Chaair, H., Labjar, H. ve Britel, O., 2017. Synthesis of β-tricalcium phosphate, Morphologie, 101, 120-124.
  • Chen, A.F., Wessel, C.B. ve Rao, N., 2013. Staphylococcus aureus screening and decolonization in orthopaedic surgery and reduction of surgical site infections, Clinical Orthopaedics and Related Research, 471, 2383-2399.
  • Ciobanu, G., Bargan, A.M. ve Luca, C., 2015. New cerium (IV)-substituted hydroxyapatite nanoparticles: Preparation and characterization, Ceramics International, 41, 12192-12201.
  • Ciobanu, C.S., Popa, C.L., Predoi ve D., 2016. Cerium-doped hydroxyapatite nanoparticles synthesized by the co-precipitation method, Journal of the Serbian Chemical Society, 81(4), 433-446.
  • De Oliveira, D.M.P, Prants, W.T., Camargo, N.H.A. ve Gemelli, E., 2009. Synthesis and characterization of powders calcium phosphate for biomedical applications, Seventh International Latin American Conference on Powder Technology, November 08-10, Atibaia, SP, Brazil, 1021-1026.
  • Duan, M., Ma, S., Song, C., Li, J. ve Qian, M., 2021. Three-dimensional printing of a β-tricalcium phosphate scaffold with dual bioactivities for bone repair, Ceramics International, 47(4), 4775-4782.
  • Ebrahimi, M., Monmaturapoj, N., Suttapreyasri, S. ve Pripatnanont, P., 2012. The fabricated Collagen-based nano-hydroxyapatite / β-tricalcium phosphate scaffolds, Advanced Materials Research, 506, 57-60.
  • Gopi, D., Ramya, S., Rajeswari, D., Karthikeyan, P. ve Kavithad, L., 2014. Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryoticstrains and in vitro studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 451, 172-180.
  • Gungor Koc, S. ve Ahmed, R.W., 2019. Fabrication and characterization of nano-TCP doped with various ions for bone implant applications, Journal of the Institute of Science and Technology, 9(4), 2181-2189.
  • Hardtstock, F., Heinrich, K., Wilke, T., Mueller, S. ve Yu, H., 2020, Burden of Staphylococcus aureus infections after orthopedic surgery in Germany, BMC Infectious Diseases, 20, 233.
  • Hassan, M.N., Mahmoud, M.M., El-Fattah, A.A. ve Kandil, S., 2016. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes, Ceramics International, 42(3), 3725-3744.
  • Hench, L.L., 1991. Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74(7), 1487-1510.
  • Hench, L.L., 1998. Bioceramics. Journal of the American Ceramic Society, 81(7), 1705-1728.
  • Kalita, S.J. ve Verma, S., 2010. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization, Materials Science and Engineering: C, 30, 295-303.
  • Kamphof, R., Lima, R.N.O., Schoones, J.W., Arts, J.J., Nelissen, R.G.H.H., Cama, G. ve Pijls, B.G.C.W., 2023. Antimicrobial activity of ion-substituted calcium phosphates: A systematic review, Heliyon, 9, e16568.
  • Kokubo, T. ve Takadama H., 2006. How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27(15), 2907-2915.
  • Kumta, P.N., Sfeir, C., Lee, D.H., Olton, D. ve Choi, D., 2005. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomaterialia, 1, 65-83.
  • Maqbool, M., Nawaz, Q., Rehman, M.A.U., Cresswell, M., Jackson, P., Hurle, K., Detsch, R., Goldmann, W.H., Shah, A.T. ve Boccaccini, A.R., 2021. Synthesis, characterization, antibacterial properties, and in vitro studies of selenium and strontium co-substituted hydroxyapatite, International Journal of Molecular Sciences, 22, 4246.
  • Mostafa, N.Y., 2005. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes, Materials Chemistry and Physics, 94(2-3), 333-341.
  • Nazir, R., Khana, A.S., Ahmed, A., Ur-Rehman, A., Chaudhry, A.A., Ur Rehman, I. ve Wong, F.S.L., 2013. Synthesis and in-vitro cytotoxicity analysis of microwave irradiated nano-apatites. Ceramics International, 39(4), 4339-4347.
  • Orlovskii, V.P., Komlev, V.S. ve Barinov, S.M., 2002. Hydroxyapatite ve hydroxyapatite-based ceramics, Inorganic Materials, 38(10), 973-984.
  • Othman, R., Mustafa, Z., Kien, P.T., Ishak, N.F., Shaaban, A. ve Mohd Noor, A.F., 2017. Parameters affecting the synthesis of β-tricalcium phosphate powder using a wet precipitation method, Journal of Mechanical Engineering and Sciences, 11(4), 3197-3205.
  • Pasand, E.G., Nemati, A., Solati-Hashjin, M., Arzani, K. ve Farzadi, A., 2012. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate, International Journal of Minerals, Metallurgy and Materials, 19(5), 441-445.
  • Ratner, B.D., Hoffman, A.S., Schoen, F.J. ve Lemons, J.E., 2004. Biomaterials science: a multidisciplinary endeavor, Ratner, B.D., Hoffman, A.S., Schoen, F.J. ve Lemons, J.E. (Eds.), Biomaterials Science An Introduction to Materials in Medicine, second ed., Elsevier Academic Press, New York-London, 1-9.
  • Rattanachan, S.T., Suksaweang, S., Jiang, T.-X., Widelitz, R.B., Chuong, C.-M. ve Srakaew, N. La-ong, 2018. Self-setting calcium phosphate enhanced with osteoconduction and bioactivity for bone cement, Chiang Mai Journal of Science, 45(5), 2132-2139.
  • Saadatian-Elahi, M., Teyssou, R. ve Vanhems, P., 2008. Staphylococcus aureus, the major pathogen in orthopaedic and cardiac surgical site infections: A literature review, International Journal of Surgery, 6(3), 238-245.
  • Sabu, U., Logesh, G., Rashad, M., Joy, A. ve Balasubramanian, M., 2019. Microwave assisted synthesis of biomorphic hydroxyapatite, Ceramics International, 45, 6718-6722.
  • Samanta, S.K., Chanda, A. ve Nandi, S.K., 2019. Physical and mechanical characterization of crystalline pure β-tri calcium phosphate & its dopants as bone substitutes, IOP Conf. Series: Materials Science and Engineering, 577, 012138.
  • Sha, L., Liu, Yuyan, Zhang, Qing, Hu, Min ve Jiang, Y., 2011. Microwave-assisted co-precipitation synthesis of high purity β-tricalcium phosphate crystalline powders, Materials Chemistry and Physics, 129, 1138-1141.
  • Shavandi, A., El-Din A. Bekhit, A., Ali, A., Sun, Z. ve Ratnayake, J.T., 2015. Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus), Powder Technology, 273, 33-39.
  • Simsek, Y.E. ve Avci, S., 2019. Synthesis and characterization of hydroxyapatite produced by microwave assisted precipitation technique, Acta Physica Polonica A, 135(5), 974-976.
  • Stipniece, L., Skadins, I. ve Mosina, M., 2022. Silver- and/or titanium-doped β-tricalcium phosphate bioceramic with antibacterial activity against Staphylococcus aureus, Ceramics International, 48(7), 10195-10201.
  • Sun, J., Zheng, X., Li, D. Fan, H., Song, Z., Ma, H., Hua, X. ve Hui, J., 2017. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility, Materials Science and Engineering: C, 73, 596-602.
  • Tabak, Y., 2023. Biyomimetik bir yaklaşım ile β-TCP/kitosan için EPD kaplama, Karadeniz Fen Bilimleri Dergisi, 13(2), 347-362.
  • Tao, Z.-S., Li, T.-L. ve Wei, S., 2023. Co-modified 3D printed β-tricalcium phosphate with magnesium and selenium promotes bone defect regeneration in ovariectomized rat, Journal of Materials Science: Materials in Medicine, 34, 7.
  • Uskoković, V., Iyer, M.A. ve Wu V.M., 2017. One ion to rule them all: combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite, Journal of Materials Chemistry. B, Materials for Biology and Medicine, 5(7), 1430-1445.
  • Wang, Y., Ma, J., Zhou, L., Chen, J., Liu, Y., Qiu, Z. ve Zhang, S., 2012. Dual functional selenium-substituted hydroxyapatite, Interface Focus, 2, 378-386.
  • Wei, L., Pang, D., He, L. ve Deng, C., 2017. Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability, Ceramics International, 43, 16141-16148.
  • Yelten, A. ve Yilmaz S., 2018. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders, Ceramics International, 44(8), 9703-9710.

İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi

Year 2023, Volume: 23 Issue: 6, 1488 - 1496, 28.12.2023
https://doi.org/10.35414/akufemubid.1250275

Abstract

β-trikalsiyum fosfat (β-TCP), ortopedi uygulamalarında sıklıkla kullanılmakta olan kalsiyum fosfat (CaP) esaslı biyoseramik malzemelerden biri olup biyoemilebilir karakterdedir ve implantasyon alanına bağlı olarak macun, kaplama, toz, granül vb. formlarda uygulanabilmektedir. β-TCP üretimi için genellikle tercih edilen yaş kimyasal yöntemlerde, üretim sürelerinin uzun ve çok adımlı olması ve proses parametrelerinin kontrol edilmesinde güçlükler yaşanması nedeniyle farklı sentez yollarının geliştirilmesi yönünde araştırmalar ağırlık kazanmıştır. Bu çalışmada, β-TCP tozları deneysel sürecin çok daha kısa ve pratik olması yönleriyle ön plana çıkan mikrodalga destekli sentez tekniği ile elde edilmiştir. Hazırlanan Ca ve P kaynak çözeltileri reaksiyona sokulduktan sonra mikrodalga ışımasına tabi tutulmuş, ışıma sonrası ürünün santrifüj edilmesiyle açığa çıkan yaş çökelti kurutulmuş ve nihai olarak 900°C’de ısıl işlem görmesi sağlanmıştır. Böylelikle antibakteriyellik ve kemik gelişimini destekleme özellikleri sergilemesi beklenen Ce+3 ve SeO3-2 katkılı β-TCP tozları üretilmiştir. Tozların karakterizasyonu kapsamında; X-Işını Difraksiyonu (XRD) ile kimyasal faz analizi, Taramalı Elektron Mikroskobu (SEM) ve Enerji Dağılım Spektrometresi (EDS) ile mikroyapı ve elementel haritalama incelemeleri, vücut benzeri sıvı (Simulated Body Fluid, SBF) içerisinde 37°C’de 14 gün tutma suretiyle biyoaktivite davranışının belirlenmesi ve Staphylococcus aureus (S. aureus, ATCC 25923) kullanılarak yapılan bakteri etkileşim testleri doğrultusunda antibakteriyellik özelliklerinin tayin edilmesi gerçekleştirilmiştir. Sentezlenen tozlar, yüzeylerinde 1X SBF çözeltisinde 14 gün bekletilme sonucunda CaP esaslı birikintiler oluşturmuştur ve bu durum örneklerin biyoaktif karakterde olduğunu göstermektedir. Ayrıca, iyon katkısına bağlı olarak bakteri koloni sayısında azalma tespit edilmesi de tozların antibakteriyellik özelliğine işaret etmektedir.

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBA-2021-34751

References

  • Abdulaah, H.A., Al-Ghaban, A.M., Anaee, R.A., Khadom, A.A. ve Kadhim, M.M., 2023. Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: Experimental, biological, theoretical, and electrochemical investigations, Journal of Electrochemical Science and Engineering, 13(1), 115-126.
  • Albulescu, R., Popa, A.-C., Enciu, A.-M., Albulescu, L., Dudau, M., Popescu, I.D., Mihai, S., Codrici, E., Pop, S., Lupu, A.-R., Stan, G.E., Manda, G. ve Tanase, C., 2019. Comprehensive In Vitro Testing of Calcium Phosphate-Based Bioceramics with Orthopedic and Dentistry Applications, Materials, 12, 3704.
  • Alshemary, A.Z., Muhammed, Y., Salman, N.A., Hussain, R., Motameni, A., Gurbuz, R., Alkaabi, M.H.H. ve Abdolahi, A., 2022. In vitro degradation and bioactivity of antibacterial chromium doped β-tricalcium phosphate bioceramics, Ceramics-Silikáty, 66(3), 347-353.
  • Baino, F. ve Yamaguchi, S., 2020. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges, Biomimetics, 5, 57.
  • Bohner, M., Le Gars Santoni, B. ve Döbelin, N., 2020. β-tricalcium phosphate for bone substitution: Synthesis and properties, Acta Biomaterialia, 113, 23-41.
  • Chaair, H., Labjar, H. ve Britel, O., 2017. Synthesis of β-tricalcium phosphate, Morphologie, 101, 120-124.
  • Chen, A.F., Wessel, C.B. ve Rao, N., 2013. Staphylococcus aureus screening and decolonization in orthopaedic surgery and reduction of surgical site infections, Clinical Orthopaedics and Related Research, 471, 2383-2399.
  • Ciobanu, G., Bargan, A.M. ve Luca, C., 2015. New cerium (IV)-substituted hydroxyapatite nanoparticles: Preparation and characterization, Ceramics International, 41, 12192-12201.
  • Ciobanu, C.S., Popa, C.L., Predoi ve D., 2016. Cerium-doped hydroxyapatite nanoparticles synthesized by the co-precipitation method, Journal of the Serbian Chemical Society, 81(4), 433-446.
  • De Oliveira, D.M.P, Prants, W.T., Camargo, N.H.A. ve Gemelli, E., 2009. Synthesis and characterization of powders calcium phosphate for biomedical applications, Seventh International Latin American Conference on Powder Technology, November 08-10, Atibaia, SP, Brazil, 1021-1026.
  • Duan, M., Ma, S., Song, C., Li, J. ve Qian, M., 2021. Three-dimensional printing of a β-tricalcium phosphate scaffold with dual bioactivities for bone repair, Ceramics International, 47(4), 4775-4782.
  • Ebrahimi, M., Monmaturapoj, N., Suttapreyasri, S. ve Pripatnanont, P., 2012. The fabricated Collagen-based nano-hydroxyapatite / β-tricalcium phosphate scaffolds, Advanced Materials Research, 506, 57-60.
  • Gopi, D., Ramya, S., Rajeswari, D., Karthikeyan, P. ve Kavithad, L., 2014. Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryoticstrains and in vitro studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 451, 172-180.
  • Gungor Koc, S. ve Ahmed, R.W., 2019. Fabrication and characterization of nano-TCP doped with various ions for bone implant applications, Journal of the Institute of Science and Technology, 9(4), 2181-2189.
  • Hardtstock, F., Heinrich, K., Wilke, T., Mueller, S. ve Yu, H., 2020, Burden of Staphylococcus aureus infections after orthopedic surgery in Germany, BMC Infectious Diseases, 20, 233.
  • Hassan, M.N., Mahmoud, M.M., El-Fattah, A.A. ve Kandil, S., 2016. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes, Ceramics International, 42(3), 3725-3744.
  • Hench, L.L., 1991. Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74(7), 1487-1510.
  • Hench, L.L., 1998. Bioceramics. Journal of the American Ceramic Society, 81(7), 1705-1728.
  • Kalita, S.J. ve Verma, S., 2010. Nanocrystalline hydroxyapatite bioceramic using microwave radiation: Synthesis and characterization, Materials Science and Engineering: C, 30, 295-303.
  • Kamphof, R., Lima, R.N.O., Schoones, J.W., Arts, J.J., Nelissen, R.G.H.H., Cama, G. ve Pijls, B.G.C.W., 2023. Antimicrobial activity of ion-substituted calcium phosphates: A systematic review, Heliyon, 9, e16568.
  • Kokubo, T. ve Takadama H., 2006. How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27(15), 2907-2915.
  • Kumta, P.N., Sfeir, C., Lee, D.H., Olton, D. ve Choi, D., 2005. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. Acta Biomaterialia, 1, 65-83.
  • Maqbool, M., Nawaz, Q., Rehman, M.A.U., Cresswell, M., Jackson, P., Hurle, K., Detsch, R., Goldmann, W.H., Shah, A.T. ve Boccaccini, A.R., 2021. Synthesis, characterization, antibacterial properties, and in vitro studies of selenium and strontium co-substituted hydroxyapatite, International Journal of Molecular Sciences, 22, 4246.
  • Mostafa, N.Y., 2005. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes, Materials Chemistry and Physics, 94(2-3), 333-341.
  • Nazir, R., Khana, A.S., Ahmed, A., Ur-Rehman, A., Chaudhry, A.A., Ur Rehman, I. ve Wong, F.S.L., 2013. Synthesis and in-vitro cytotoxicity analysis of microwave irradiated nano-apatites. Ceramics International, 39(4), 4339-4347.
  • Orlovskii, V.P., Komlev, V.S. ve Barinov, S.M., 2002. Hydroxyapatite ve hydroxyapatite-based ceramics, Inorganic Materials, 38(10), 973-984.
  • Othman, R., Mustafa, Z., Kien, P.T., Ishak, N.F., Shaaban, A. ve Mohd Noor, A.F., 2017. Parameters affecting the synthesis of β-tricalcium phosphate powder using a wet precipitation method, Journal of Mechanical Engineering and Sciences, 11(4), 3197-3205.
  • Pasand, E.G., Nemati, A., Solati-Hashjin, M., Arzani, K. ve Farzadi, A., 2012. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate, International Journal of Minerals, Metallurgy and Materials, 19(5), 441-445.
  • Ratner, B.D., Hoffman, A.S., Schoen, F.J. ve Lemons, J.E., 2004. Biomaterials science: a multidisciplinary endeavor, Ratner, B.D., Hoffman, A.S., Schoen, F.J. ve Lemons, J.E. (Eds.), Biomaterials Science An Introduction to Materials in Medicine, second ed., Elsevier Academic Press, New York-London, 1-9.
  • Rattanachan, S.T., Suksaweang, S., Jiang, T.-X., Widelitz, R.B., Chuong, C.-M. ve Srakaew, N. La-ong, 2018. Self-setting calcium phosphate enhanced with osteoconduction and bioactivity for bone cement, Chiang Mai Journal of Science, 45(5), 2132-2139.
  • Saadatian-Elahi, M., Teyssou, R. ve Vanhems, P., 2008. Staphylococcus aureus, the major pathogen in orthopaedic and cardiac surgical site infections: A literature review, International Journal of Surgery, 6(3), 238-245.
  • Sabu, U., Logesh, G., Rashad, M., Joy, A. ve Balasubramanian, M., 2019. Microwave assisted synthesis of biomorphic hydroxyapatite, Ceramics International, 45, 6718-6722.
  • Samanta, S.K., Chanda, A. ve Nandi, S.K., 2019. Physical and mechanical characterization of crystalline pure β-tri calcium phosphate & its dopants as bone substitutes, IOP Conf. Series: Materials Science and Engineering, 577, 012138.
  • Sha, L., Liu, Yuyan, Zhang, Qing, Hu, Min ve Jiang, Y., 2011. Microwave-assisted co-precipitation synthesis of high purity β-tricalcium phosphate crystalline powders, Materials Chemistry and Physics, 129, 1138-1141.
  • Shavandi, A., El-Din A. Bekhit, A., Ali, A., Sun, Z. ve Ratnayake, J.T., 2015. Microwave-assisted synthesis of high purity β-tricalcium phosphate crystalline powder from the waste of Green mussel shells (Perna canaliculus), Powder Technology, 273, 33-39.
  • Simsek, Y.E. ve Avci, S., 2019. Synthesis and characterization of hydroxyapatite produced by microwave assisted precipitation technique, Acta Physica Polonica A, 135(5), 974-976.
  • Stipniece, L., Skadins, I. ve Mosina, M., 2022. Silver- and/or titanium-doped β-tricalcium phosphate bioceramic with antibacterial activity against Staphylococcus aureus, Ceramics International, 48(7), 10195-10201.
  • Sun, J., Zheng, X., Li, D. Fan, H., Song, Z., Ma, H., Hua, X. ve Hui, J., 2017. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility, Materials Science and Engineering: C, 73, 596-602.
  • Tabak, Y., 2023. Biyomimetik bir yaklaşım ile β-TCP/kitosan için EPD kaplama, Karadeniz Fen Bilimleri Dergisi, 13(2), 347-362.
  • Tao, Z.-S., Li, T.-L. ve Wei, S., 2023. Co-modified 3D printed β-tricalcium phosphate with magnesium and selenium promotes bone defect regeneration in ovariectomized rat, Journal of Materials Science: Materials in Medicine, 34, 7.
  • Uskoković, V., Iyer, M.A. ve Wu V.M., 2017. One ion to rule them all: combined antibacterial, osteoinductive and anticancer properties of selenite-incorporated hydroxyapatite, Journal of Materials Chemistry. B, Materials for Biology and Medicine, 5(7), 1430-1445.
  • Wang, Y., Ma, J., Zhou, L., Chen, J., Liu, Y., Qiu, Z. ve Zhang, S., 2012. Dual functional selenium-substituted hydroxyapatite, Interface Focus, 2, 378-386.
  • Wei, L., Pang, D., He, L. ve Deng, C., 2017. Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability, Ceramics International, 43, 16141-16148.
  • Yelten, A. ve Yilmaz S., 2018. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders, Ceramics International, 44(8), 9703-9710.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Biomaterial
Journal Section Articles
Authors

Azade Yelten Coşkun 0000-0001-6089-6257

Yağmur Göçtü 0000-0001-8312-3679

Batur Ercan 0000-0003-1657-1142

Project Number FBA-2021-34751
Early Pub Date December 22, 2023
Publication Date December 28, 2023
Submission Date February 15, 2023
Published in Issue Year 2023 Volume: 23 Issue: 6

Cite

APA Yelten Coşkun, A., Göçtü, Y., & Ercan, B. (2023). İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1488-1496. https://doi.org/10.35414/akufemubid.1250275
AMA Yelten Coşkun A, Göçtü Y, Ercan B. İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2023;23(6):1488-1496. doi:10.35414/akufemubid.1250275
Chicago Yelten Coşkun, Azade, Yağmur Göçtü, and Batur Ercan. “İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği Ile Üretimi Ve Antibakteriyellik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, no. 6 (December 2023): 1488-96. https://doi.org/10.35414/akufemubid.1250275.
EndNote Yelten Coşkun A, Göçtü Y, Ercan B (December 1, 2023) İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1488–1496.
IEEE A. Yelten Coşkun, Y. Göçtü, and B. Ercan, “İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, pp. 1488–1496, 2023, doi: 10.35414/akufemubid.1250275.
ISNAD Yelten Coşkun, Azade et al. “İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği Ile Üretimi Ve Antibakteriyellik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (December 2023), 1488-1496. https://doi.org/10.35414/akufemubid.1250275.
JAMA Yelten Coşkun A, Göçtü Y, Ercan B. İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1488–1496.
MLA Yelten Coşkun, Azade et al. “İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği Ile Üretimi Ve Antibakteriyellik Özelliklerinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 23, no. 6, 2023, pp. 1488-96, doi:10.35414/akufemubid.1250275.
Vancouver Yelten Coşkun A, Göçtü Y, Ercan B. İyon Katkılı β-Trikalsiyum Fosfat Tozlarının Mikrodalga Destekli Sentez Tekniği ile Üretimi ve Antibakteriyellik Özelliklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1488-96.