Research Article
BibTex RIS Cite

Utilization of Response Surface Methodology for Predicting the Compressive Strength of PVA Fiber-Reinforced Cementitious Composites Containing Fly Ash and Andesite Powder as Waste Materials

Year 2024, Volume: 24 Issue: 1, 103 - 116, 27.02.2024
https://doi.org/10.35414/akufemubid.1325417

Abstract

In this study, the effect of waste andesite dust (WAD) substitution used in cementitious composite production on the strength values of composite material was investigated and the data were modeled by surface response methodology (RSM) and their compatibility with experimental data was analyzed. In the production of cementitious mixtures, WAD was substituted with cement at six different ratios as 5%, 10%, 15%, 20%, 25% and 30% by weight. In addition, the effect of curing times on compressive strength was investigated at the age of 90-days. While the cement and WAD replacement rates constituted the main input data for the RSM, the 90-days compressive strength values constituted the output data. When the data obtained from the compressive strength estimation conducted by RSM and the experimental data obtained under laboratory conditions were compared, it was determined that the compatibility between them was good with a 95% coefficient of determination. In addition, the 5% substitution rate used in the mixtures provided higher strength values among other substitution rates.

References

  • Abdulkadir, I., Mohammed, B. S., Liew, M. S., Wahab, M. M. A., 2021. Modelling and optimization of the mechanical properties of engineered cementitious composite containing crumb rubber pretreated with graphene oxide using response surface methodology. Construction and Building Materials, 310, 125259. https://doi.org/10.1016/j.conbuildmat.2021.125259
  • Adamu, M., Trabanpruek, P., Jongvivatsakul, P., Likitlersuang, S., Iwanami, M., 2021. Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Construction and Building Materials, 308, 125085. https://doi.org/10.1016/j.conbuildmat.2021.125085
  • Adesina, A., Das, S., 2021. Sustainable utilization of recycled asphalt as aggregates in engineered cementitious composites. Construction and Building Materials, 283, 122727. https://doi.org/10.1016/j.conbuildmat.2021.122727
  • Alyamac, K. E., Ghafari, E., Ince, R., 2017. Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Alyousef, R., Ahmad, W., Ahmad, A., Aslam, F., Joyklad, P., Alabduljabbar, H., 2021. Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: A review. Journal of Cleaner Production, 329, 129736. https://doi.org/10.1016/j.jclepro.2021.129736
  • Amani, A., Ramezanianpour, A. M., Palassi, M., 2021. Investigation on the sustainable use of electric arc furnace slag aggregates in eco-friendly alkali-activated low fineness slag concrete as a green construction composite. Journal of Cleaner Production, 307, 127257. https://doi.org/10.1016/j.jclepro.2021.127257
  • Ariöz, Ö., Yildirim, K., 2012. Türkiye’de çimento sektöründeki belirsizlikler ve Türk çimento sektörünün SWOT analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 32, 173-190.
  • ASTM C109 / C109M-20b, 2020. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). West Conshohocken, Philadelphia, 1-12. https://doi.org/0.1520/C0109_C0109M-21
  • ASTM C618-19, 2019. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards. West Conshohocken, Philadelphia, 1-5. https://doi.org/10.1520/C0618-19
  • Ávalos-Rendón, T. L., Chelala, E. A. P., Mendoza Escobedo, C. J., Figueroa, I. A., Lara, V. H., Palacios-Romero, L. M., 2018. Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite. Materials Science and Engineering: B, 229, 79–85. https://doi.org/10.1016/j.mseb.2017.12.020
  • BS EN 933-1:2012., 2012. Tests for geometrical properties of aggregates - Determination of particle size distribution. Sieving method. United States, 1-22. https://doi.org/10.3403/30241873
  • Çelikten, S, Canbaz, M., 2021. Atik Andezit Ve Mermer Tozunun Çimento Harçlarinin Dayanim Özelliklerine Etkisi. dergipark.org.tr, 29, 43–48. https://doi.org/10.31796/ogummf.709810
  • Çelikten, S., 2021. Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Advanced Powder Technology, 32, 1–9. https://doi.org/10.1016/j.apt.2020.10.011
  • Danish, A., Mosaberpanah, M. A., Salim, M. U., Fediuk, R., Rashid, M. F., Waqas, R. M., 2021. Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges. Journal of Building Engineering, 44, 102600. https://doi.org/10.1016/j.jobe.2021.102600
  • Davraz, M., Ceylan, H., Topçu, İ. B., Uygunoğlu, T., 2018. Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 165, 494–503. https://doi.org/10.1016/j.conbuildmat.2018.01.043
  • Deng, Y., Yan, C., Zhang, J., Yin, L., Liu, S., Yan, Y., 2022. Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder. Journal of Cleaner Production, 333, 130222. https://doi.org/10.1016/j.jclepro.2021.130222
  • Gao, D., Lv, M., Pang, Y., Tang, J., Zhang, Y., 2022. Property analysis and mixture design of high ductility cementitious composites with totally recycled fine aggregate based on target strength and strain capacity. Journal of Cleaner Production, 130492. https://doi.org/10.1016/j.jclepro.2022.130492
  • Ghafourian, K., Kabirifar, K., Mahdiyar, A., Yazdani, M., Ismail, S., Tam, V. W. Y., 2021. A synthesis of express analytic hierarchy process (EAHP) and partial least squares-structural equations modeling (PLS-SEM) for sustainable construction and demolition waste management assessment: The case of Malaysia. Recycling, 6(4), 73. https://doi.org/10.3390/recycling6040073
  • Ghavami, S., Naseri, H., Jahanbakhsh, H., Moghadas Nejad, F., 2021. The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Construction and Building Materials, 285, 122918. https://doi.org/10.1016/j.conbuildmat.2021.12298
  • Hamidi, M., Kacimi, L., Cyr, M., Clastres, P., 2013. Evaluation and improvement of pozzolanic activity of andesite for its use in eco-efficient cement. Construction and Building Materials, 47, 1268–1277. https://doi.org/10.1016/j.conbuildmat.2013.06.013
  • Kaliyavaradhan, S. K., Li, L., Ling, T. C., 2022. Response surface methodology for the optimization of CO2 uptake using waste concrete powder. Construction and Building Materials, 340, 127758. https://doi.org/10.1016/j.conbuildmat.2022.127758
  • Kawabata, Y., Dunant, C., Yamada, K., Scrivener, K., 2019. Impact of temperature on expansive behavior of concrete with a highly reactive andesite due to the alkali–silica reaction. Cement and Concrete Research, 125, 105888. https://doi.org/10.1016/j.cemconres.2019.105888
  • Kocak, Y., Nas, S., 2014. The effect of using fly ash on the strength and hydration characteristics of blended cements. Construction and Building Materials, 73, 25–32. https://doi.org/10.1016/j.conbuildmat.2014.09.048
  • Labbaci, Y., Labbaci, B., Abdelaziz, Y., Mekkaoui, A., Alouani, A., 2017. The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468–481. https://doi.org/10.1016/j.conbuildmat.2016.12.088
  • Li, V., 2002. Interface Tailoring for Strain-hardening PVA-ECC. ACI Materials Journal, 99, 463-472. https://doi.org/10.14359/12325
  • Lye, H., Bashar, M.S., Liew, M., Wahab, M.M.A., 2020. Bond behaviour of CFRP-strengthened ECC using Response Surface Methodology (RSM). Case Studies in Construction materials, 12, e00327. https://doi.org/10.1016/j.cscm.2019.e00327
  • Mindess, S., Young, J.F., Darwin, D. 2003. Concrete. Hoboken: Prentice Hall. 2nd ed., 1-644.
  • Mirmozaffari, M., Yazdani, M., Boskabadi, A., Dolatsara, H. A., Kabirifar, K., Golilarz, 2020. A novel machine learning approach combined with optimization models for eco-efficiency evaluation. Applied Sciences (Switzerland), 10(5), 1-31. https://doi.org/10.3390/app10155210
  • Mohammed, B. S., Azmi, N. J., Abdullahi, M., 2011. Evaluation of rubbercrete based on ultrasonic pulse velocity and rebound hammer tests. Construction and Building Materials, 25, 1388–1397. https://doi.org/10.1016/j.conbuildmat.2010.09.004
  • Mohammed, B. S., Khed, V. C., Nuruddin, M. F., 2018. Rubbercrete mixture optimization using response surface methodology. Journal of Cleaner Production, 171, 1605–1621. https://doi.org/10.1016/j.jclepro.2017.10.102
  • Myers, R. H., Montgomery, D. C. and Anderson-Cook, M., 2016. Response surface methodology process and product optimization using designed experiments. John Wiley & Sons, Ltd, New York, 1-856.
  • Özkan, Ş., Ceylan, H., 2022. The effects on mechanical properties of sustainable use of waste andesite dust as a partial substitution of cement in cementitious composites. Journal of Building Engineering, 58, 104959. https://doi.org/10.1016/j.jobe.2022.104959
  • Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A. F., Jamshidi, M., Ding, Y., 2012. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Construction and Building Materials, 30, 400–405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  • Prošek, Z., Nežerka, V., Tesárek, P., 2020. Enhancing cementitious pastes with waste marble sludge. Construction and Building Materials, 255, 119372. https://doi.org/10.1016/j.conbuildmat.2020.119372
  • Quedou, P. G., Wirquin, E., Bokhoree, C., 2021. Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry. Case Studies in Construction Materials, 14, e00545. https://doi.org/10.1016/j.cscm.2021.e00545
  • Ray, S., Haque, M., Ahmed, T., Nahin, T. T., 2023. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber. Journal of King Saud University - Engineering Sciences, 35(3), 185-199. https://doi.org/10.1016/j.jksues.2021.03.006
  • Samimi, K., Kamali-Bernard, S., Akbar Maghsoudi, A., Maghsoudi, M., Siad, H., 2017. Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes. Construction and Building Materials, 151, 292–311. https://doi.org/10.1016/j.conbuildmat.2017.06.071
  • Shahmansouri, A. A., Yazdani, M., Hosseini, M., Akbarzadeh Bengar, H., Farrokh Ghatte, H., 2022. The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Construction and Building Materials, 317, 125876. https://doi.org/10.1016/j.conbuildmat.2021.125876
  • Shannag, M. J., Yeginobali, A., 1995. Properties of pastes, mortars and concretes containing natural pozzolan. Cement and Concrete Research, 25, 647–657. https://doi.org/10.1016/0008-8846(95)00053-F
  • Signorini, C., Nobili, A., 2022. Durability of fibre-reinforced cementitious composites (FRCC) including recycled synthetic fibres and rubber aggregates. Applications in Engineering Science, 9, 100077. https://doi.org/10.1016/j.apples.2021.100077
  • Sogancioglu, M., Yel, E., Yilmaz-Keskin, U. S., 2013. Utilization of andesite processing wastewater treatment sludge as admixture in concrete mix. Construction and Building Materials, 46, 150–155. https://doi.org/10.1016/j.conbuildmat.2013.04.035
  • Thapa, V., Waldmann, D., 2021. Binary blended cement pastes and concrete using gravel wash mud (GWM) powders. Construction and Building Materials, 302, 124225. https://doi.org/10.1016/j.conbuildmat.2021.124225
  • TS EN 197-1, 2012. Çimento - Bölüm 1: Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri. Ankara, 1-40.
  • Valente, M., Sambucci, M., Chougan, M., Ghaffar, S. H., 2022. Reducing the emission of climate-altering substances in cementitious materials: A comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tire rubber. Journal of Cleaner Production, 333, 130013. https://doi.org/10.1016/j.jclepro.2021.130013
  • Yang, K. H., Song, J. K., Song, K. Il, 2013. Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. https://doi.org/10.1016/j.jclepro.2012.08.001
  • Yaro, N. S. A., Napiah, M. Bin, Sutanto, M. H., Usman, A., Saeed, S. M., 2021. Modeling and optimization of mixing parameters using response surface methodology and characterization of palm oil clinker fine modified bitumen. Construction and Building Materials, 298, 123849. https://doi.org/10.1016/j.conbuildmat.2021.123849
  • Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Muhammad, A., 2022. Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures. Construction and Building Materials, 324, 126618. https://doi.org/10.1016/j.conbuildmat.2022.126618
  • Yazdani, M., Kabirifar, K., Fathollahi-Fard, A. M., Mojtahedi, M., 2021a. Production scheduling of off-site prefabricated construction components considering sequence dependent due dates. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-021-16285-0
  • Yazdani, M., Kabirifar, K., Frimpong, B. E., Shariati, M., Mirmozaffari, M., Boskabadi, A., 2021b. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. Journal of Cleaner Production, 280, 124138. https://doi.org/10.1016/j.jclepro.2020.124138
  • Zeyad, A. M., Khan, A. H., Tayeh, B. A., 2020. Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9, 806–818. https://doi.org/10.1016/j.jmrt.2019.11.021
  • Zhang, Z., Yang, F., Liu, J. C., Wang, S., 2020. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash. Cement and Concrete Research, 137, 106200. https://doi.org/10.1016/j.cemconres.2020.106200
  • Zhou, Y., Xie, L., Kong, D., Peng, D., Zheng, T., 2022. Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method. Construction and Building Materials, 341, 127874. https://doi.org/10.1016/j.conbuildmat.2022.127874
  • Verimadenciliği, http://www.stat.gen.tr/index.php?istek=sinif&dersid=ist01&konuid=ver01&max=1, (06.07.2023)

Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması

Year 2024, Volume: 24 Issue: 1, 103 - 116, 27.02.2024
https://doi.org/10.35414/akufemubid.1325417

Abstract

Bu çalışmada çimento esaslı kompozit üretiminde kullanılan atık andezit tozu (AAT) ikamesinin kompozit malzemenin dayanım değerlerine etkisi araştırılmış ve edilen veriler yanıt yüzey yöntemi (YYM) metoduyla modellenerek deneysel veriler ile uyumu incelenmiştir. Çimento esaslı karışımların üretilmesinde AAT, çimento ile ağırlıkça %5, %10, %15, %20, %25 ve %30 olmak üzere 6 farklı oranda ikame edilmiştir. Ayrıca basınç dayanımı üzerine kür süresinin etkisi 90 gün sonunda incelenmiştir. Çimento ve AAT ikame oranları YYM için ana girdi verilerini oluştururken 90 günlük basınç dayanımı değerleri yanıt verilerini oluşturmuştur. YYM ile yapılan basınç dayanımı tahmininden elde edilen veriler ile laboratuvar koşullarında elde edilen deneysel veriler kıyaslandığında aralarındaki uyumun %95’lik bir belirleme katsayısı ile iyi derecede olduğu tespit edilmiştir. Ayrıca karışımlarda kullanılan %5 ikame oranı, diğer ikame oranları arasında daha yüksek dayanım değerleri elde edilmesini sağlamıştır.

Thanks

Yazarlar, AAT temininden dolayı Fonolit Doğaltaş (Ünlü Madencilik)’e teşekkür eder.

References

  • Abdulkadir, I., Mohammed, B. S., Liew, M. S., Wahab, M. M. A., 2021. Modelling and optimization of the mechanical properties of engineered cementitious composite containing crumb rubber pretreated with graphene oxide using response surface methodology. Construction and Building Materials, 310, 125259. https://doi.org/10.1016/j.conbuildmat.2021.125259
  • Adamu, M., Trabanpruek, P., Jongvivatsakul, P., Likitlersuang, S., Iwanami, M., 2021. Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Construction and Building Materials, 308, 125085. https://doi.org/10.1016/j.conbuildmat.2021.125085
  • Adesina, A., Das, S., 2021. Sustainable utilization of recycled asphalt as aggregates in engineered cementitious composites. Construction and Building Materials, 283, 122727. https://doi.org/10.1016/j.conbuildmat.2021.122727
  • Alyamac, K. E., Ghafari, E., Ince, R., 2017. Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Alyousef, R., Ahmad, W., Ahmad, A., Aslam, F., Joyklad, P., Alabduljabbar, H., 2021. Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: A review. Journal of Cleaner Production, 329, 129736. https://doi.org/10.1016/j.jclepro.2021.129736
  • Amani, A., Ramezanianpour, A. M., Palassi, M., 2021. Investigation on the sustainable use of electric arc furnace slag aggregates in eco-friendly alkali-activated low fineness slag concrete as a green construction composite. Journal of Cleaner Production, 307, 127257. https://doi.org/10.1016/j.jclepro.2021.127257
  • Ariöz, Ö., Yildirim, K., 2012. Türkiye’de çimento sektöründeki belirsizlikler ve Türk çimento sektörünün SWOT analizi. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 32, 173-190.
  • ASTM C109 / C109M-20b, 2020. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). West Conshohocken, Philadelphia, 1-12. https://doi.org/0.1520/C0109_C0109M-21
  • ASTM C618-19, 2019. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards. West Conshohocken, Philadelphia, 1-5. https://doi.org/10.1520/C0618-19
  • Ávalos-Rendón, T. L., Chelala, E. A. P., Mendoza Escobedo, C. J., Figueroa, I. A., Lara, V. H., Palacios-Romero, L. M., 2018. Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite. Materials Science and Engineering: B, 229, 79–85. https://doi.org/10.1016/j.mseb.2017.12.020
  • BS EN 933-1:2012., 2012. Tests for geometrical properties of aggregates - Determination of particle size distribution. Sieving method. United States, 1-22. https://doi.org/10.3403/30241873
  • Çelikten, S, Canbaz, M., 2021. Atik Andezit Ve Mermer Tozunun Çimento Harçlarinin Dayanim Özelliklerine Etkisi. dergipark.org.tr, 29, 43–48. https://doi.org/10.31796/ogummf.709810
  • Çelikten, S., 2021. Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars. Advanced Powder Technology, 32, 1–9. https://doi.org/10.1016/j.apt.2020.10.011
  • Danish, A., Mosaberpanah, M. A., Salim, M. U., Fediuk, R., Rashid, M. F., Waqas, R. M., 2021. Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges. Journal of Building Engineering, 44, 102600. https://doi.org/10.1016/j.jobe.2021.102600
  • Davraz, M., Ceylan, H., Topçu, İ. B., Uygunoğlu, T., 2018. Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 165, 494–503. https://doi.org/10.1016/j.conbuildmat.2018.01.043
  • Deng, Y., Yan, C., Zhang, J., Yin, L., Liu, S., Yan, Y., 2022. Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder. Journal of Cleaner Production, 333, 130222. https://doi.org/10.1016/j.jclepro.2021.130222
  • Gao, D., Lv, M., Pang, Y., Tang, J., Zhang, Y., 2022. Property analysis and mixture design of high ductility cementitious composites with totally recycled fine aggregate based on target strength and strain capacity. Journal of Cleaner Production, 130492. https://doi.org/10.1016/j.jclepro.2022.130492
  • Ghafourian, K., Kabirifar, K., Mahdiyar, A., Yazdani, M., Ismail, S., Tam, V. W. Y., 2021. A synthesis of express analytic hierarchy process (EAHP) and partial least squares-structural equations modeling (PLS-SEM) for sustainable construction and demolition waste management assessment: The case of Malaysia. Recycling, 6(4), 73. https://doi.org/10.3390/recycling6040073
  • Ghavami, S., Naseri, H., Jahanbakhsh, H., Moghadas Nejad, F., 2021. The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Construction and Building Materials, 285, 122918. https://doi.org/10.1016/j.conbuildmat.2021.12298
  • Hamidi, M., Kacimi, L., Cyr, M., Clastres, P., 2013. Evaluation and improvement of pozzolanic activity of andesite for its use in eco-efficient cement. Construction and Building Materials, 47, 1268–1277. https://doi.org/10.1016/j.conbuildmat.2013.06.013
  • Kaliyavaradhan, S. K., Li, L., Ling, T. C., 2022. Response surface methodology for the optimization of CO2 uptake using waste concrete powder. Construction and Building Materials, 340, 127758. https://doi.org/10.1016/j.conbuildmat.2022.127758
  • Kawabata, Y., Dunant, C., Yamada, K., Scrivener, K., 2019. Impact of temperature on expansive behavior of concrete with a highly reactive andesite due to the alkali–silica reaction. Cement and Concrete Research, 125, 105888. https://doi.org/10.1016/j.cemconres.2019.105888
  • Kocak, Y., Nas, S., 2014. The effect of using fly ash on the strength and hydration characteristics of blended cements. Construction and Building Materials, 73, 25–32. https://doi.org/10.1016/j.conbuildmat.2014.09.048
  • Labbaci, Y., Labbaci, B., Abdelaziz, Y., Mekkaoui, A., Alouani, A., 2017. The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468–481. https://doi.org/10.1016/j.conbuildmat.2016.12.088
  • Li, V., 2002. Interface Tailoring for Strain-hardening PVA-ECC. ACI Materials Journal, 99, 463-472. https://doi.org/10.14359/12325
  • Lye, H., Bashar, M.S., Liew, M., Wahab, M.M.A., 2020. Bond behaviour of CFRP-strengthened ECC using Response Surface Methodology (RSM). Case Studies in Construction materials, 12, e00327. https://doi.org/10.1016/j.cscm.2019.e00327
  • Mindess, S., Young, J.F., Darwin, D. 2003. Concrete. Hoboken: Prentice Hall. 2nd ed., 1-644.
  • Mirmozaffari, M., Yazdani, M., Boskabadi, A., Dolatsara, H. A., Kabirifar, K., Golilarz, 2020. A novel machine learning approach combined with optimization models for eco-efficiency evaluation. Applied Sciences (Switzerland), 10(5), 1-31. https://doi.org/10.3390/app10155210
  • Mohammed, B. S., Azmi, N. J., Abdullahi, M., 2011. Evaluation of rubbercrete based on ultrasonic pulse velocity and rebound hammer tests. Construction and Building Materials, 25, 1388–1397. https://doi.org/10.1016/j.conbuildmat.2010.09.004
  • Mohammed, B. S., Khed, V. C., Nuruddin, M. F., 2018. Rubbercrete mixture optimization using response surface methodology. Journal of Cleaner Production, 171, 1605–1621. https://doi.org/10.1016/j.jclepro.2017.10.102
  • Myers, R. H., Montgomery, D. C. and Anderson-Cook, M., 2016. Response surface methodology process and product optimization using designed experiments. John Wiley & Sons, Ltd, New York, 1-856.
  • Özkan, Ş., Ceylan, H., 2022. The effects on mechanical properties of sustainable use of waste andesite dust as a partial substitution of cement in cementitious composites. Journal of Building Engineering, 58, 104959. https://doi.org/10.1016/j.jobe.2022.104959
  • Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A. F., Jamshidi, M., Ding, Y., 2012. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Construction and Building Materials, 30, 400–405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  • Prošek, Z., Nežerka, V., Tesárek, P., 2020. Enhancing cementitious pastes with waste marble sludge. Construction and Building Materials, 255, 119372. https://doi.org/10.1016/j.conbuildmat.2020.119372
  • Quedou, P. G., Wirquin, E., Bokhoree, C., 2021. Sustainable concrete: Potency of sugarcane bagasse ash as a cementitious material in the construction industry. Case Studies in Construction Materials, 14, e00545. https://doi.org/10.1016/j.cscm.2021.e00545
  • Ray, S., Haque, M., Ahmed, T., Nahin, T. T., 2023. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber. Journal of King Saud University - Engineering Sciences, 35(3), 185-199. https://doi.org/10.1016/j.jksues.2021.03.006
  • Samimi, K., Kamali-Bernard, S., Akbar Maghsoudi, A., Maghsoudi, M., Siad, H., 2017. Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes. Construction and Building Materials, 151, 292–311. https://doi.org/10.1016/j.conbuildmat.2017.06.071
  • Shahmansouri, A. A., Yazdani, M., Hosseini, M., Akbarzadeh Bengar, H., Farrokh Ghatte, H., 2022. The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Construction and Building Materials, 317, 125876. https://doi.org/10.1016/j.conbuildmat.2021.125876
  • Shannag, M. J., Yeginobali, A., 1995. Properties of pastes, mortars and concretes containing natural pozzolan. Cement and Concrete Research, 25, 647–657. https://doi.org/10.1016/0008-8846(95)00053-F
  • Signorini, C., Nobili, A., 2022. Durability of fibre-reinforced cementitious composites (FRCC) including recycled synthetic fibres and rubber aggregates. Applications in Engineering Science, 9, 100077. https://doi.org/10.1016/j.apples.2021.100077
  • Sogancioglu, M., Yel, E., Yilmaz-Keskin, U. S., 2013. Utilization of andesite processing wastewater treatment sludge as admixture in concrete mix. Construction and Building Materials, 46, 150–155. https://doi.org/10.1016/j.conbuildmat.2013.04.035
  • Thapa, V., Waldmann, D., 2021. Binary blended cement pastes and concrete using gravel wash mud (GWM) powders. Construction and Building Materials, 302, 124225. https://doi.org/10.1016/j.conbuildmat.2021.124225
  • TS EN 197-1, 2012. Çimento - Bölüm 1: Genel çimentolar - Bileşim, özellikler ve uygunluk kriterleri. Ankara, 1-40.
  • Valente, M., Sambucci, M., Chougan, M., Ghaffar, S. H., 2022. Reducing the emission of climate-altering substances in cementitious materials: A comparison between alkali-activated materials and Portland cement-based composites incorporating recycled tire rubber. Journal of Cleaner Production, 333, 130013. https://doi.org/10.1016/j.jclepro.2021.130013
  • Yang, K. H., Song, J. K., Song, K. Il, 2013. Assessment of CO2 reduction of alkali-activated concrete. Journal of Cleaner Production, 39, 265–272. https://doi.org/10.1016/j.jclepro.2012.08.001
  • Yaro, N. S. A., Napiah, M. Bin, Sutanto, M. H., Usman, A., Saeed, S. M., 2021. Modeling and optimization of mixing parameters using response surface methodology and characterization of palm oil clinker fine modified bitumen. Construction and Building Materials, 298, 123849. https://doi.org/10.1016/j.conbuildmat.2021.123849
  • Yaro, N. S. A., Sutanto, M. H., Habib, N. Z., Napiah, M., Usman, A., Muhammad, A., 2022. Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures. Construction and Building Materials, 324, 126618. https://doi.org/10.1016/j.conbuildmat.2022.126618
  • Yazdani, M., Kabirifar, K., Fathollahi-Fard, A. M., Mojtahedi, M., 2021a. Production scheduling of off-site prefabricated construction components considering sequence dependent due dates. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-021-16285-0
  • Yazdani, M., Kabirifar, K., Frimpong, B. E., Shariati, M., Mirmozaffari, M., Boskabadi, A., 2021b. Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia. Journal of Cleaner Production, 280, 124138. https://doi.org/10.1016/j.jclepro.2020.124138
  • Zeyad, A. M., Khan, A. H., Tayeh, B. A., 2020. Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. Journal of Materials Research and Technology, 9, 806–818. https://doi.org/10.1016/j.jmrt.2019.11.021
  • Zhang, Z., Yang, F., Liu, J. C., Wang, S., 2020. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash. Cement and Concrete Research, 137, 106200. https://doi.org/10.1016/j.cemconres.2020.106200
  • Zhou, Y., Xie, L., Kong, D., Peng, D., Zheng, T., 2022. Research on optimizing performance of desulfurization-gypsum-based composite cementitious materials based on response surface method. Construction and Building Materials, 341, 127874. https://doi.org/10.1016/j.conbuildmat.2022.127874
  • Verimadenciliği, http://www.stat.gen.tr/index.php?istek=sinif&dersid=ist01&konuid=ver01&max=1, (06.07.2023)
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Şükrü Özkan 0000-0002-7223-9673

Hakan Ceylan 0000-0001-8099-9819

Publication Date February 27, 2024
Submission Date July 10, 2023
Published in Issue Year 2024 Volume: 24 Issue: 1

Cite

APA Özkan, Ş., & Ceylan, H. (2024). Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(1), 103-116. https://doi.org/10.35414/akufemubid.1325417
AMA Özkan Ş, Ceylan H. Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. February 2024;24(1):103-116. doi:10.35414/akufemubid.1325417
Chicago Özkan, Şükrü, and Hakan Ceylan. “Atık Malzeme Olarak Uçucu Kül Ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, no. 1 (February 2024): 103-16. https://doi.org/10.35414/akufemubid.1325417.
EndNote Özkan Ş, Ceylan H (February 1, 2024) Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 1 103–116.
IEEE Ş. Özkan and H. Ceylan, “Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, pp. 103–116, 2024, doi: 10.35414/akufemubid.1325417.
ISNAD Özkan, Şükrü - Ceylan, Hakan. “Atık Malzeme Olarak Uçucu Kül Ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/1 (February 2024), 103-116. https://doi.org/10.35414/akufemubid.1325417.
JAMA Özkan Ş, Ceylan H. Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:103–116.
MLA Özkan, Şükrü and Hakan Ceylan. “Atık Malzeme Olarak Uçucu Kül Ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 24, no. 1, 2024, pp. 103-16, doi:10.35414/akufemubid.1325417.
Vancouver Özkan Ş, Ceylan H. Atık Malzeme Olarak Uçucu Kül ve Andezit Tozu İçeren PVA Lif Donatılı Çimento Esaslı Kompozitlerin Basınç Dayanımının Tahmininde Yanıt Yüzey Metodolojisinin Kullanılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(1):103-16.