Research Article
BibTex RIS Cite

AKTİF DENGELEME TOPOLOJİSİNE SAHİP AKÜ YÖNETİM SİSTEMİ TASARIMI

Year 2024, Volume: 2 Issue: 1, 35 - 48, 30.06.2024

Abstract

Piller birden fazla hücre içeren ve kullanan paketlerdir. Ancak pili oluşturan hücrelerin tamamı eşit şekilde şarj ve deşarj olamaz ve bu dengesizlik pilde verim kaybına neden olur. Aynı tarihte, aynı fabrikada, aynı yöntemle üretilmiş olsalar bile mesela biri %40 tüketilirken diğeri %50 tüketiliyor. Bu noktada batarya yönetim sistemleri (BMS) önem kazanmaktadır. Aktif ve pasif yöntemler olarak iki ana başlığa ayrılan BMS bu makalenin odak noktasını oluşturmaktadır. Hem aktif hem de pasif hücre dengeleme, her hücrenin şarj durumunu (SoC) izleyip eşleştirerek sistem sağlığını iyileştirmenin etkili yoludur. Aktif hücre dengeleme, şarj döngüsü sırasında yükü basitçe dağıtan pasif hücre dengelemenin aksine, şarj ve deşarj döngüsü sırasında yükü yeniden dağıtır. Böylece aktif hücre dengeleme, sistemin çalışma süresini artırır ve şarj verimliliğini artırabilir. Aynı zamanda daha güvenilir, fazla enerjiyi düşük enerjili hücreye gönderdiği için enerji israfını önleyen, dengeleme hızı daha hızlı olan bir yöntemdir. Aktif dengeleme daha karmaşık, daha büyük bir karbon ayak izi oluşturur ve pasif dengeleme daha uygun maliyetlidir. Bu nedenle sektörde pasif dengeleme daha çok tercih edilmektedir. Ancak aktif dengeleme, yüksek gerilim uygulamaları ve elektrikli araç teknolojileri için daha uygundur. Aktif dengelemenin dezavantajları göz önüne alındığında, bu yöntemin geliştirilmesi, sektöre bilgi sağlanması ve teknolojinin popüler pek çok alanında enerji verimliliğinin artırılması temel amaçtır.

References

  • [1] Buccolini, L., Garbuglia, F., Unterhorst, M., & Conti, M. (2018). HW platform for BMS algorithm validation. 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). doi:10.1109/prime.2018.8430326
  • [2] A. Nath and B. Rajpathak, "Analysis Of Cell Balancing Techniques In BMS For Electric Vehicle," 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 2022, pp. 1-6, doi: 10.1109/ICICCSP53532.2022.9862513
  • [3] Amin, K. Ismail, A. Nugroho and S. Kaleg, "Passive balancing battery management system using MOSFET internal resistance as balancing resistor," 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia, 2017, pp. 151-155, doi: 10.1109/ICSEEA.2017.8267701.
  • [4] Choi Chul-hyung and K. Si-kyung, “A Passive Balancing System Based on The SOC Sorting Technique,” Int. J. Adv. Comput. Technol, vol. 5, no. 11, pp. 253–263, 2013.
  • [5] I. Aizpuru, U. Iraola, J. M. Canales, M. Echeverria, and I. Gil, “Passive balancing design for Li-ion battery packs based on single cell experimental tests for a CCCV charging mode,” in 2013 International Conference on Clean Electrical Power (ICCEP), 2013, pp. 93–98.
  • [6] Kutkut, N.H. and Divan, D.M. (1996). Dynamic equalization techniques for series battery stacks. In Proceedings of Intelec’96 - International Telecommunications Energy Conference, 514–521. doi: 10.1109/INTLEC.1996.573384
  • [7] Daowd, M., Omar, N., Van Den Bossche, P., and Van Mierlo, J. (2011). Passive and active battery balancing comparison based on matlab simulation. In 2011 IEEE Vehicle Power and Propulsion Conference, 1–7. doi: 10.1109/VPPC.2011.6043010.
  • [8] H. Yang and J. Lee, “Wireless power transfer techniques for cell balancing of battery management systems,” in 2014 IEEE Wireless Power Transfer Conference. IEEE, 2014, pp. 162–165.
  • [9] M. Liu, M. Fu, Y. Wang, and C. Ma, “Battery cell equalization via megahertz multiple-receiver wireless power transfer,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4135–4144, 2017.
  • [10] L. Liu, W. Sun, P. Han, R. Mai, Z. He, and L. Bo, “Active balancing of lithium-ion battery cells using wpt as an energy carrier,” IET Power Electronics, vol. 12, no. 10, pp. 2578–2585, 2019.
  • [11] Hemavathi, S. (2020). Overview of Cell Balancing Methods for Li‐ion Battery Technology. Energy Storage. doi:10.1002/est2.203
  • [12] Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013, 2015, Gregory L. Plett
  • [13] Moore, S. W., & Schneider, P. J. (2001). A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems. SAE Technical Paper Series. doi:10.4271/2001-01-0959
  • [14] A. Popp, H. Fechtner, B. Schmuelling, S. Kremzow-Tennie, T. Scholz and F. Pautzke, "Battery Management Systems Topologies: Applications: Implications of different voltage levels," 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA), 2021, pp. 43-50, doi: 10.1109/ICPEA52760.2021.9639285.
  • [15] Gao, Z. C., Chin, C. S., Toh, W. D., Chiew, J., & Jia, J. (2017). State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle. Journal of Advanced Transportation, 2017, 1–14. doi:10.1155/2017/6510747
  • [16] Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, Yao-Ching Hsieh, Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries, Applied Energy, Volume 86, Issue 9, 2009, Pages 1506-1511, ISSN 0306-2619,
  • [17] Baccouche I, Jemmali S, Mlayah A, Manai B, Amara NE. Implementation of an improved Coulomb-counting algorithm based on a piecewise SOC-OCV relationship for SOC estimation of li-IonBattery. arXiv preprint arXiv:1803.10654. 2018 Mar 27.
  • [18] Qaisar, S. M., Dallet, D., Benjamin, S., Desprez, P., & Yahiaoui, R. (2013). Power efficient analog to digital conversion for the Li-ion battery voltage monitoring and measurement. 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). doi:10.1109/i2mtc.2013.6555668
  • [19] Zhang S, Guo X, Dou X, Zhang X. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustainable Energy Technologies and Assessments. 2020 Aug 1; 40:100752
  • [20] https://lastminuteengineers.com/ds18b20-arduino-tutorial/
  • [21] https://lastminuteengineers.com/multiple-ds18b20-arduino-tutorial/
  • [22] https://solarduino.com/how-to-measure-dc-voltage-with-arduino/
  • [23] https://www.electronicshub.org/interfacing-acs712-current-sensor-with-arduino/
  • [24] https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf
  • [25] A. A. Arefin, A. S. Nazmul Huda, Z. Syed, A. Kalam and H. Terasaki, "ACS712 Based Intelligent Solid-State Relay for Overcurrent Protection of PV- Diesel Hybrid Mini Grid," 2020 IEEE Student Conference on Research and Development(SCOReD),2020,pp.59-62, doi:10.1109/SCOReD5037 1.2020.9251026.
  • [26] https://www.circuitbasics.com/setting-up-a-5v-relay-on-the-arduino/
  • [27] Daowd, M., Antoine, M., Omar, N., van den Bossche, P., & van Mierlo, J. (2013). Single Switched Capacitor Battery Balancing System Enhancements. Energies, 6(4), 2149–2174. doi:10.3390/en6042149.

DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY

Year 2024, Volume: 2 Issue: 1, 35 - 48, 30.06.2024

Abstract

Batteries are packages that contain and use multiple cells. However, not all cells that make up the battery can charge and discharge equally, and this imbalance leads to a loss of efficiency in the battery. Even if they were produced on the same date, in the same factory, with the same method, for example, one of them is consumed by 40% while the other is consumed by 50%. At this point, battery management systems (BMS) are gaining importance. BMS, which is divided into two main headings as active and passive methods, is the focus of this paper. Both active and passive cell balancing are effective ways to improve system health by monitoring and matching the state of charge (SoC) of each cell. Active cell balancing redistributes the charge during the charge and discharge cycle, unlike passive cell balancing, which simply distributes the charge during the charge cycle. Thus, active cell balancing increases system uptime and can improve charging efficiency. At the same time, it is a method that is more reliable, avoids energy wastage as it sends excess energy to the low-energy cell, and has a faster balancing speed. Active balancing creates a more complex, larger carbon footprint and passive balancing is more cost-effective. Therefore, passive balancing is more preferred in the sector. However, active balancing is more suitable for high-voltage applications and electric vehicle technologies. Considering the disadvantages of active balancing, the main objectives are to develop this method, to provide know-how for the sector, and to increase energy efficiency in many popular areas of technology.

References

  • [1] Buccolini, L., Garbuglia, F., Unterhorst, M., & Conti, M. (2018). HW platform for BMS algorithm validation. 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME). doi:10.1109/prime.2018.8430326
  • [2] A. Nath and B. Rajpathak, "Analysis Of Cell Balancing Techniques In BMS For Electric Vehicle," 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 2022, pp. 1-6, doi: 10.1109/ICICCSP53532.2022.9862513
  • [3] Amin, K. Ismail, A. Nugroho and S. Kaleg, "Passive balancing battery management system using MOSFET internal resistance as balancing resistor," 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia, 2017, pp. 151-155, doi: 10.1109/ICSEEA.2017.8267701.
  • [4] Choi Chul-hyung and K. Si-kyung, “A Passive Balancing System Based on The SOC Sorting Technique,” Int. J. Adv. Comput. Technol, vol. 5, no. 11, pp. 253–263, 2013.
  • [5] I. Aizpuru, U. Iraola, J. M. Canales, M. Echeverria, and I. Gil, “Passive balancing design for Li-ion battery packs based on single cell experimental tests for a CCCV charging mode,” in 2013 International Conference on Clean Electrical Power (ICCEP), 2013, pp. 93–98.
  • [6] Kutkut, N.H. and Divan, D.M. (1996). Dynamic equalization techniques for series battery stacks. In Proceedings of Intelec’96 - International Telecommunications Energy Conference, 514–521. doi: 10.1109/INTLEC.1996.573384
  • [7] Daowd, M., Omar, N., Van Den Bossche, P., and Van Mierlo, J. (2011). Passive and active battery balancing comparison based on matlab simulation. In 2011 IEEE Vehicle Power and Propulsion Conference, 1–7. doi: 10.1109/VPPC.2011.6043010.
  • [8] H. Yang and J. Lee, “Wireless power transfer techniques for cell balancing of battery management systems,” in 2014 IEEE Wireless Power Transfer Conference. IEEE, 2014, pp. 162–165.
  • [9] M. Liu, M. Fu, Y. Wang, and C. Ma, “Battery cell equalization via megahertz multiple-receiver wireless power transfer,” IEEE Transactions on Power Electronics, vol. 33, no. 5, pp. 4135–4144, 2017.
  • [10] L. Liu, W. Sun, P. Han, R. Mai, Z. He, and L. Bo, “Active balancing of lithium-ion battery cells using wpt as an energy carrier,” IET Power Electronics, vol. 12, no. 10, pp. 2578–2585, 2019.
  • [11] Hemavathi, S. (2020). Overview of Cell Balancing Methods for Li‐ion Battery Technology. Energy Storage. doi:10.1002/est2.203
  • [12] Lecture notes prepared by Dr. Gregory L. Plett. Copyright © 2013, 2015, Gregory L. Plett
  • [13] Moore, S. W., & Schneider, P. J. (2001). A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems. SAE Technical Paper Series. doi:10.4271/2001-01-0959
  • [14] A. Popp, H. Fechtner, B. Schmuelling, S. Kremzow-Tennie, T. Scholz and F. Pautzke, "Battery Management Systems Topologies: Applications: Implications of different voltage levels," 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA), 2021, pp. 43-50, doi: 10.1109/ICPEA52760.2021.9639285.
  • [15] Gao, Z. C., Chin, C. S., Toh, W. D., Chiew, J., & Jia, J. (2017). State-of-Charge Estimation and Active Cell Pack Balancing Design of Lithium Battery Power System for Smart Electric Vehicle. Journal of Advanced Transportation, 2017, 1–14. doi:10.1155/2017/6510747
  • [16] Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, Yao-Ching Hsieh, Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries, Applied Energy, Volume 86, Issue 9, 2009, Pages 1506-1511, ISSN 0306-2619,
  • [17] Baccouche I, Jemmali S, Mlayah A, Manai B, Amara NE. Implementation of an improved Coulomb-counting algorithm based on a piecewise SOC-OCV relationship for SOC estimation of li-IonBattery. arXiv preprint arXiv:1803.10654. 2018 Mar 27.
  • [18] Qaisar, S. M., Dallet, D., Benjamin, S., Desprez, P., & Yahiaoui, R. (2013). Power efficient analog to digital conversion for the Li-ion battery voltage monitoring and measurement. 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). doi:10.1109/i2mtc.2013.6555668
  • [19] Zhang S, Guo X, Dou X, Zhang X. A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustainable Energy Technologies and Assessments. 2020 Aug 1; 40:100752
  • [20] https://lastminuteengineers.com/ds18b20-arduino-tutorial/
  • [21] https://lastminuteengineers.com/multiple-ds18b20-arduino-tutorial/
  • [22] https://solarduino.com/how-to-measure-dc-voltage-with-arduino/
  • [23] https://www.electronicshub.org/interfacing-acs712-current-sensor-with-arduino/
  • [24] https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf
  • [25] A. A. Arefin, A. S. Nazmul Huda, Z. Syed, A. Kalam and H. Terasaki, "ACS712 Based Intelligent Solid-State Relay for Overcurrent Protection of PV- Diesel Hybrid Mini Grid," 2020 IEEE Student Conference on Research and Development(SCOReD),2020,pp.59-62, doi:10.1109/SCOReD5037 1.2020.9251026.
  • [26] https://www.circuitbasics.com/setting-up-a-5v-relay-on-the-arduino/
  • [27] Daowd, M., Antoine, M., Omar, N., van den Bossche, P., & van Mierlo, J. (2013). Single Switched Capacitor Battery Balancing System Enhancements. Energies, 6(4), 2149–2174. doi:10.3390/en6042149.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage
Journal Section Research Articles
Authors

Tuna Aykut 0009-0005-5999-7735

Sezer Çetin 0009-0004-4509-5047

Alper Mandacı 0009-0004-4320-8992

Sıtkı Güner 0000-0003-1085-0474

Publication Date June 30, 2024
Submission Date December 27, 2023
Acceptance Date June 26, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Aykut, T., Çetin, S., Mandacı, A., Güner, S. (2024). DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY. Akdeniz Mühendislik Dergisi, 2(1), 35-48.
AMA Aykut T, Çetin S, Mandacı A, Güner S. DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY. AKUJE. June 2024;2(1):35-48.
Chicago Aykut, Tuna, Sezer Çetin, Alper Mandacı, and Sıtkı Güner. “DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY”. Akdeniz Mühendislik Dergisi 2, no. 1 (June 2024): 35-48.
EndNote Aykut T, Çetin S, Mandacı A, Güner S (June 1, 2024) DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY. Akdeniz Mühendislik Dergisi 2 1 35–48.
IEEE T. Aykut, S. Çetin, A. Mandacı, and S. Güner, “DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY”, AKUJE, vol. 2, no. 1, pp. 35–48, 2024.
ISNAD Aykut, Tuna et al. “DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY”. Akdeniz Mühendislik Dergisi 2/1 (June 2024), 35-48.
JAMA Aykut T, Çetin S, Mandacı A, Güner S. DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY. AKUJE. 2024;2:35–48.
MLA Aykut, Tuna et al. “DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY”. Akdeniz Mühendislik Dergisi, vol. 2, no. 1, 2024, pp. 35-48.
Vancouver Aykut T, Çetin S, Mandacı A, Güner S. DESIGN OF A BATTERY MANAGEMENT SYSTEM WITH ACTIVE BALANCING TOPOLOGY. AKUJE. 2024;2(1):35-48.