Research Article
BibTex RIS Cite

EFFECT OF DIFFERENT CHEMICAL SURFACE MODIFICATION PROCESSES ON THE MECHANICAL PROPERTIES OF RICE HUSK-EPOXY COMPOSITE MATERIALS

Year 2024, Volume: 2 Issue: 1, 1 - 12, 30.06.2024

Abstract

Rice husks, a common agricultural waste product, contain fibrous structures that can be utilized as reinforcement or filler materials in polymer matrix composites. The availability and favorable mechanical properties of rice husks make them an attractive choice. However, when the untreated husk is mixed with thermoset polymers, the resulting interface between rice husk and polymer remains weak. To improve interface properties, physical and chemical pretreatments are applied. In this study, chemical surface treatments were performed on rice husks to enhance adhesion at the interfaces of rice husk-epoxy biocomposite materials. Various concentrations of acid and base chemicals were used for the pretreatments. Subsequently, mixtures with different rice husk content were molded into tensile test specimens. Mechanical tests revealed that as the rice husk content increased, the tensile strength decreased. Among the surface treatments, alkali treatments outperformed acidic treatments, with 3% sodium hydroxide-treated samples exhibiting the highest mechanical properties. Microscopic analysis indicated that the interfacial voids decreased after surface treatments, with the lowest void content observed in samples treated with sodium hydroxide.

Project Number

MUH19001.19.010

References

  • [1] A. Gomez-Campos, C. Vialle, A. Rouilly, L. Hamelin, A. Rogeon, D. Hardy, and C. Sablayrolles “Natural Fibre Polymer Composites - A game changer for the aviation sector?,” J. Clean. Prod., vol. 286, p. 124986, 2021, doi: 10.1016/j.jclepro.2020.124986.
  • [2] R. V. Patel, A. Yadav, and J. Winczek, “Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications,” Appl. Sci., vol. 13, no. 8, 2023, doi: 10.3390/app13085126.
  • [3] S. Vemuganti, R. Chennareddy, A. Riad, and M. M. Reda Taha, “Pultruded gfrp reinforcing bars using nanomodified vinyl ester,” Materials (Basel)., vol. 13, no. 24, pp. 1–21, 2020, doi: 10.3390/ma13245710.
  • [4] F. L. Jin, X. Li, and S. J. Park, “Synthesis and application of epoxy resins: A review,” J. Ind. Eng. Chem., vol. 29, pp. 1–11, 2015, doi: 10.1016/j.jiec.2015.03.026.
  • [5] A. Belaadi, A. Bezazi, M. Bourchak, F. Scarpa, and C. Zhu, “Thermochemical and statistical mechanical properties of natural sisal fibres,” Compos. Part B Eng., vol. 67, pp. 481–489, 2014, doi: 10.1016/j.compositesb.2014.07.029.
  • [6] S. D. A. Shubbar, “Experimental Investigation of Rice Husk Particles as Filler in Hybrid Composites,” Eng. Sci., no. 26, p. 2018, 2018.
  • [7] G. Frisoni, M. Baiardo, M. Scandola, D. Lednická, M. C. Cnockaert, J. Mergaert, and J. Swings, “Natural cellulose fibers: Heterogeneous acetylation kinetics and biodegradation behavior,” Biomacromolecules, vol. 2, no. 2, pp. 476–482, 2001, doi: 10.1021/bm0056409.
  • [8] N. Petchwattana, S. Covavisaruch, and S. Chanakul, “Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene,” J. Polym. Res., vol. 19, no. 7, 2012, doi: 10.1007/s10965-012-9921-6.
  • [9] H. S. Yang, H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang, “Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites,” Compos. Struct., vol. 77, no. 1, pp. 45–55, 2007, doi: 10.1016/j.compstruct.2005.06.005.
  • [10] M. H. Nguyen, B. S. Kim, J. R. Ha, and J. Il Song, “Effect of plasma and NaOH treatment for rice husk/PP composites,” Adv. Compos. Mater., vol. 20, no. 5, pp. 435–442, 2011, doi: 10.1163/092430411X570112.
  • [11] I. Ahmad, C. E. Lane, D. H. Mohd, and I. Abdullah, “Electron-beam-irradiated rice husk powder as reinforcing filler in natural rubber/high-density polyethylene (NR/HDPE) composites,” Compos. Part B Eng., vol. 43, no. 8, pp. 3069–3075, 2012, doi: 10.1016/j.compositesb.2012.04.071.
  • [12] H. D. Rozman, M. H. Lee, R. N. Kumar, A. Abusamah, and Z. A. Mohd Ishak, “Effect of chemical modification of rice husk with glycidyl methacrylate on the mechanical and physical properties of rice husk-polystyrene composites,” J. Wood Chem. Technol., vol. 20, no. 1, pp. 93–109, 2000, doi: 10.1080/02773810009349626.
  • [13] R. Santiagoo, H. Ismail, and K. Hussin, “Effects of Acetic Anhydride on the Properties of Polypropylene(PP)/Recycled Acrylonitrile Butadiene(NBRr)/Rice Husk Powder(RHP) Composites,” Polym. - Plast. Technol. Eng., vol. 51, no. 15, pp. 1505–1512, 2012, doi: 10.1080/03602559.2012.698685.
  • [14] H. Gu, “Tensile behaviours of the coir fibre and related composites after NaOH treatment,” Mater. Des., vol. 30, no. 9, pp. 3931–3934, 2009, doi: 10.1016/j.matdes.2009.01.035.
  • [15] J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty, “The influence of fibre treatment of the performance of coir-polyester composites,” Compos. Sci. Technol., vol. 61, no. 9, pp. 1303–1310, 2001, doi: 10.1016/S0266-3538(01)00021-5.
  • [16] M. M. Rahman and M. A. Khan, “Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties,” Compos. Sci. Technol., vol. 67, no. 11–12, pp. 2369–2376, 2007, doi: 10.1016/j.compscitech.2007.01.009.
  • [17] S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. El Bouari, “Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites,” Case Stud. Constr. Mater., vol. 8, no. October 2017, pp. 203–212, 2018, doi: 10.1016/j.cscm.2018.02.001.
  • [18] J. Madera-santana and M. O. W. Richardson, “Effects of natural fiber surface treatments on ethylene vinyl acetate composites,” Plast. Res. Online, no. July, pp. 1–3, 2012.
  • [19] N. Bisht and P. C. Gope, “Effect of Alkali Treatment on Mechanical Properties of Rice Husk Flour Reinforced Epoxy Bio-Composite,” Mater. Today Proc., vol. 5, no. 11, pp. 24330–24338, 2018, doi: 10.1016/j.matpr.2018.10.228.
  • [20] N. Bisht and P. Chandra Gope, “Effect of rice husk (treated/untreated) and rice husk ash on fracture toughness of epoxy bio-composite,” J. Mech. Behav. Mater., vol. 29, no. 1, pp. 177–185, 2021, doi: 10.1515/jmbm-2020-0018.
  • [21] L. S, H. J, and Y. Y, “Properties of Rice Husk/Epoxy Composites Under Different Interfacial Treatments,” Polym. Compos., no. 38, pp. 1992–2000, 2017, doi: 10.1002/pc.
  • [22] Z. Chen, Y. Xu, and S. Shivkumar, “Microstructure and tensile properties of various varieties of rice husk,” J. Sci. Food Agric., vol. 98, no. 3, pp. 1061–1070, 2018, doi: 10.1002/jsfa.8556.
  • [23] K. a Olivero, H. J. Barraza, E. a O. Rear, and M. C. Altan, “Effect of Injection Rate and Post-Fill Cure,” J. Compos. Mater., vol. 36, no. 16, pp. 2010–2028, 2011, doi: 10.1106/002199802026244.
  • [24] S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review,” Polym. Eng. Sci., vol. 49, no. 7, pp. 1253–1272, Jul. 2009, doi: 10.1002/pen.21328.
  • [25] S. S. Bhambure, A. S. Rao, and T. Senthilkumar, “Characterization of Control and Chemically Modified Kenaf Fiber,” J. Nat. Fibers, vol. 19, no. 15, pp. 10320–10330, Nov. 2022, doi: 10.1080/15440478.2021.1993500.
  • [26] C. Mongioví et al., “Use of Chènevotte, a Valuable Co-Product of Industrial Hemp Fiber, as Adsorbent for Pollutant Removal. Part I: Chemical, Microscopic, Spectroscopic and Thermogravimetric Characterization of Raw and Modified Samples,” Molecules, vol. 26, no. 15, p. 4574, Jul. 2021, doi: 10.3390/molecules26154574.
  • [27] T. P. T. Tran, J.-C. Bénézet, and A. Bergeret, “Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks,” Ind. Crops Prod., vol. 58, pp. 111–124, Jul. 2014, doi: 10.1016/j.indcrop.2014.04.012.
  • [28] W. Frącz, G. Janowski, and Ł. Bąk, “Influence of the Alkali Treatment of Flax and Hemp Fibers on the Properties of PHBV Based Biocomposites,” Polymers (Basel)., vol. 13, no. 12, p. 1965, Jun. 2021, doi: 10.3390/polym13121965.

FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ

Year 2024, Volume: 2 Issue: 1, 1 - 12, 30.06.2024

Abstract

Bazı tarım ürünlerinin atık kısımlarında bulunan lifli yapılar, polimer matrisli kompozit malzemeler içerisinde takviye veya dolgu malzemesi olarak kullanılmaktadırlar. Pirinç kabuğu da bu yapıdaki tarımsal atıklarına örnektir. Bunun en temel sebeplerinden bir tanesi pirinç kabuğunun kolaylıkla bulunması ve iyi mekanik özelliklere sahip olmasıdır. Atık eldesi sonrası elde edilen kabuk kısmın işlem görmeden termoset ile karıştırılmasıyla pirinç kabuğu ve polimer arasındaki arayüz zayıf kalmaktadır. Arayüz özelliklerinin iyileştirilmesi için fiziksel ve kimyasal ön işlemler uygulanmaktadır. Bu çalışmada pirinç kabuğu-epoksi biyokompozit malzemelerin ara yüzeylerindeki adhezyon artışı için pirinç kabuklarına kimyasal ön işlemler uygulanmıştır. Bu ön işlemler farklı konsantrasyonlara sahip asit, baz kimyasalların tatbiki ile gerçekleştirilmiştir. Ön işlemler sonrası farklı pirinç kabuğu oranlarına sahip karışımları kalıplara dökülmüştür. Uygulanan mekanik testler sonrasında çekme dayanımının pirinç kabuğu oranı artması ile düştüğü görülerken, alkali yüzey işlemlerinin asidik işlemlere oranla daha iyi sonuç verdiği, çalışılan yüzey iyileştirmeler arasında %3 sodyum hidroksit uygulanmış numunelerin en yüksek mekanik özellikleri gösterdiği tespit edilmiştir. Mikroskop çalışmasının sonuçlarına göre, arayüzde oluşan boşluk miktarı yüz işlemleri ile azalmıştır ve en az boşluk miktarı sodyum hidroksit ile iyileştirme yapılan numunelerde elde edilmiştir.

Ethical Statement

Etik beyanı bulunmamaktadır.

Supporting Institution

Hitit Üniversitesi

Project Number

MUH19001.19.010

References

  • [1] A. Gomez-Campos, C. Vialle, A. Rouilly, L. Hamelin, A. Rogeon, D. Hardy, and C. Sablayrolles “Natural Fibre Polymer Composites - A game changer for the aviation sector?,” J. Clean. Prod., vol. 286, p. 124986, 2021, doi: 10.1016/j.jclepro.2020.124986.
  • [2] R. V. Patel, A. Yadav, and J. Winczek, “Physical, Mechanical, and Thermal Properties of Natural Fiber-Reinforced Epoxy Composites for Construction and Automotive Applications,” Appl. Sci., vol. 13, no. 8, 2023, doi: 10.3390/app13085126.
  • [3] S. Vemuganti, R. Chennareddy, A. Riad, and M. M. Reda Taha, “Pultruded gfrp reinforcing bars using nanomodified vinyl ester,” Materials (Basel)., vol. 13, no. 24, pp. 1–21, 2020, doi: 10.3390/ma13245710.
  • [4] F. L. Jin, X. Li, and S. J. Park, “Synthesis and application of epoxy resins: A review,” J. Ind. Eng. Chem., vol. 29, pp. 1–11, 2015, doi: 10.1016/j.jiec.2015.03.026.
  • [5] A. Belaadi, A. Bezazi, M. Bourchak, F. Scarpa, and C. Zhu, “Thermochemical and statistical mechanical properties of natural sisal fibres,” Compos. Part B Eng., vol. 67, pp. 481–489, 2014, doi: 10.1016/j.compositesb.2014.07.029.
  • [6] S. D. A. Shubbar, “Experimental Investigation of Rice Husk Particles as Filler in Hybrid Composites,” Eng. Sci., no. 26, p. 2018, 2018.
  • [7] G. Frisoni, M. Baiardo, M. Scandola, D. Lednická, M. C. Cnockaert, J. Mergaert, and J. Swings, “Natural cellulose fibers: Heterogeneous acetylation kinetics and biodegradation behavior,” Biomacromolecules, vol. 2, no. 2, pp. 476–482, 2001, doi: 10.1021/bm0056409.
  • [8] N. Petchwattana, S. Covavisaruch, and S. Chanakul, “Mechanical properties, thermal degradation and natural weathering of high density polyethylene/rice hull composites compatibilized with maleic anhydride grafted polyethylene,” J. Polym. Res., vol. 19, no. 7, 2012, doi: 10.1007/s10965-012-9921-6.
  • [9] H. S. Yang, H. J. Kim, H. J. Park, B. J. Lee, and T. S. Hwang, “Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites,” Compos. Struct., vol. 77, no. 1, pp. 45–55, 2007, doi: 10.1016/j.compstruct.2005.06.005.
  • [10] M. H. Nguyen, B. S. Kim, J. R. Ha, and J. Il Song, “Effect of plasma and NaOH treatment for rice husk/PP composites,” Adv. Compos. Mater., vol. 20, no. 5, pp. 435–442, 2011, doi: 10.1163/092430411X570112.
  • [11] I. Ahmad, C. E. Lane, D. H. Mohd, and I. Abdullah, “Electron-beam-irradiated rice husk powder as reinforcing filler in natural rubber/high-density polyethylene (NR/HDPE) composites,” Compos. Part B Eng., vol. 43, no. 8, pp. 3069–3075, 2012, doi: 10.1016/j.compositesb.2012.04.071.
  • [12] H. D. Rozman, M. H. Lee, R. N. Kumar, A. Abusamah, and Z. A. Mohd Ishak, “Effect of chemical modification of rice husk with glycidyl methacrylate on the mechanical and physical properties of rice husk-polystyrene composites,” J. Wood Chem. Technol., vol. 20, no. 1, pp. 93–109, 2000, doi: 10.1080/02773810009349626.
  • [13] R. Santiagoo, H. Ismail, and K. Hussin, “Effects of Acetic Anhydride on the Properties of Polypropylene(PP)/Recycled Acrylonitrile Butadiene(NBRr)/Rice Husk Powder(RHP) Composites,” Polym. - Plast. Technol. Eng., vol. 51, no. 15, pp. 1505–1512, 2012, doi: 10.1080/03602559.2012.698685.
  • [14] H. Gu, “Tensile behaviours of the coir fibre and related composites after NaOH treatment,” Mater. Des., vol. 30, no. 9, pp. 3931–3934, 2009, doi: 10.1016/j.matdes.2009.01.035.
  • [15] J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty, “The influence of fibre treatment of the performance of coir-polyester composites,” Compos. Sci. Technol., vol. 61, no. 9, pp. 1303–1310, 2001, doi: 10.1016/S0266-3538(01)00021-5.
  • [16] M. M. Rahman and M. A. Khan, “Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties,” Compos. Sci. Technol., vol. 67, no. 11–12, pp. 2369–2376, 2007, doi: 10.1016/j.compscitech.2007.01.009.
  • [17] S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. El Bouari, “Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites,” Case Stud. Constr. Mater., vol. 8, no. October 2017, pp. 203–212, 2018, doi: 10.1016/j.cscm.2018.02.001.
  • [18] J. Madera-santana and M. O. W. Richardson, “Effects of natural fiber surface treatments on ethylene vinyl acetate composites,” Plast. Res. Online, no. July, pp. 1–3, 2012.
  • [19] N. Bisht and P. C. Gope, “Effect of Alkali Treatment on Mechanical Properties of Rice Husk Flour Reinforced Epoxy Bio-Composite,” Mater. Today Proc., vol. 5, no. 11, pp. 24330–24338, 2018, doi: 10.1016/j.matpr.2018.10.228.
  • [20] N. Bisht and P. Chandra Gope, “Effect of rice husk (treated/untreated) and rice husk ash on fracture toughness of epoxy bio-composite,” J. Mech. Behav. Mater., vol. 29, no. 1, pp. 177–185, 2021, doi: 10.1515/jmbm-2020-0018.
  • [21] L. S, H. J, and Y. Y, “Properties of Rice Husk/Epoxy Composites Under Different Interfacial Treatments,” Polym. Compos., no. 38, pp. 1992–2000, 2017, doi: 10.1002/pc.
  • [22] Z. Chen, Y. Xu, and S. Shivkumar, “Microstructure and tensile properties of various varieties of rice husk,” J. Sci. Food Agric., vol. 98, no. 3, pp. 1061–1070, 2018, doi: 10.1002/jsfa.8556.
  • [23] K. a Olivero, H. J. Barraza, E. a O. Rear, and M. C. Altan, “Effect of Injection Rate and Post-Fill Cure,” J. Compos. Mater., vol. 36, no. 16, pp. 2010–2028, 2011, doi: 10.1106/002199802026244.
  • [24] S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review,” Polym. Eng. Sci., vol. 49, no. 7, pp. 1253–1272, Jul. 2009, doi: 10.1002/pen.21328.
  • [25] S. S. Bhambure, A. S. Rao, and T. Senthilkumar, “Characterization of Control and Chemically Modified Kenaf Fiber,” J. Nat. Fibers, vol. 19, no. 15, pp. 10320–10330, Nov. 2022, doi: 10.1080/15440478.2021.1993500.
  • [26] C. Mongioví et al., “Use of Chènevotte, a Valuable Co-Product of Industrial Hemp Fiber, as Adsorbent for Pollutant Removal. Part I: Chemical, Microscopic, Spectroscopic and Thermogravimetric Characterization of Raw and Modified Samples,” Molecules, vol. 26, no. 15, p. 4574, Jul. 2021, doi: 10.3390/molecules26154574.
  • [27] T. P. T. Tran, J.-C. Bénézet, and A. Bergeret, “Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: Effects of alkaline and silane surface treatments of husks,” Ind. Crops Prod., vol. 58, pp. 111–124, Jul. 2014, doi: 10.1016/j.indcrop.2014.04.012.
  • [28] W. Frącz, G. Janowski, and Ł. Bąk, “Influence of the Alkali Treatment of Flax and Hemp Fibers on the Properties of PHBV Based Biocomposites,” Polymers (Basel)., vol. 13, no. 12, p. 1965, Jun. 2021, doi: 10.3390/polym13121965.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials, Material Characterization
Journal Section Research Articles
Authors

Mehmet Selim Demirtaş 0000-0003-1627-1641

Emir Avcıoğlu 0000-0002-6560-2921

Görkem Eğemen Güloğlu 0000-0002-1119-2533

Project Number MUH19001.19.010
Publication Date June 30, 2024
Submission Date May 25, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Demirtaş, M. S., Avcıoğlu, E., & Güloğlu, G. E. (2024). FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Akdeniz Mühendislik Dergisi, 2(1), 1-12.
AMA Demirtaş MS, Avcıoğlu E, Güloğlu GE. FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ. AKUJE. June 2024;2(1):1-12.
Chicago Demirtaş, Mehmet Selim, Emir Avcıoğlu, and Görkem Eğemen Güloğlu. “FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ”. Akdeniz Mühendislik Dergisi 2, no. 1 (June 2024): 1-12.
EndNote Demirtaş MS, Avcıoğlu E, Güloğlu GE (June 1, 2024) FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ. Akdeniz Mühendislik Dergisi 2 1 1–12.
IEEE M. S. Demirtaş, E. Avcıoğlu, and G. E. Güloğlu, “FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ”, AKUJE, vol. 2, no. 1, pp. 1–12, 2024.
ISNAD Demirtaş, Mehmet Selim et al. “FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ”. Akdeniz Mühendislik Dergisi 2/1 (June 2024), 1-12.
JAMA Demirtaş MS, Avcıoğlu E, Güloğlu GE. FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ. AKUJE. 2024;2:1–12.
MLA Demirtaş, Mehmet Selim et al. “FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ”. Akdeniz Mühendislik Dergisi, vol. 2, no. 1, 2024, pp. 1-12.
Vancouver Demirtaş MS, Avcıoğlu E, Güloğlu GE. FARKLI KİMYASAL YÜZEY İYİLEŞTİRME İŞLEMLERİNİN PİRİNÇ KABUĞU EPOKSİ KOMPOZİT MALZEMELERİN MEKANİK ÖZELLİKLERİNE ETKİSİ. AKUJE. 2024;2(1):1-12.