BibTex RIS Cite

Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.)

Year 2016, Volume: 30 Issue: 1, 46 - 52, 30.06.2016

Abstract

Öz: Bu çalışmada, kışlık yem bitkisi olarak yaygın şekilde üretilen Macar fiği (Vicia pannonica Crantz) ve yem bezelyesi (Pisum arvense L.)’nin farklı sulama seviyelerindeki (%100, %75, %50 ve %25 tarla kapasitesi) toprak üstü ve toprak altı organik kütle üretimleri üzerindeki etkileri ele alınmıştır. Deneme Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Tarla Bitkileri laboratuvarında 15.11.2014 ile 15.05.2015 tarihleri arasında yürütülmüştür. Araştırma tesadüf parselleri deneme desenine göre 4 tekerrürlü olarak kurulmuştur. Araştırmada elde edilen sonuçlara göre, sulama seviyeleri Macar fiğinde ve yem bezelyesinde bitki boyu, toprak üstü yaş ve kuru kütlesi, toplam kütle, toprak üstü kuru madde oranı ile toprak altı kütlesini önemli düzeyde etkilemiştir. Her iki yem bitkisinde de en yüksek bitki boyu, yaş ve kuru toprak üstü kütlesi, kuru madde oranı ve toprak altı kütlesi genelde %75 sulama seviyesinde belirlenmiştir. En düşük sulama seviyesinde bitkiler en az organik madde üretmişlerdir. Buna göre Macar fiği ve yem bezelyesi yetiştiriciliğinde topraktaki yararlı su %75 tarla kapasitesine indiğinde sulama yapılması uygun görülmektedir.
Anahtar Kelimeler: Macar fiği, tem bezelyesi, toprak üstü kütle, toprak altı kütle

Abstract: The present study was conducted to investigate the effects of different irrigation levels (100, 75, 50 and 25% of field capacity) on above and underground organic biomass production of commonly grown Hungarian vetch (Vicia pannonica Crantz) and field pea (Pisum arvense L.). Experiments were carried out in laboratories in Field Crops Department of Çanakkale Onsekiz Mart University between the dates 15.11.2014 and 15.05.2015. Experiments were conducted in randomized plots design with 4 replications. Current findings revealed that irrigation water levels significantly affected plant height, aboveground fresh and dry biomass, aboveground dry matter ratio and underground biomass of Hungarian vetch an Field Pea. The greatest plant height, aboveground fresh and dry biomass, dry matter ratio and underground biomass of both forage plants were obtained from 75% irrigation level. The plants produced the least organic matter at the lowest irrigation level. It was concluded that irrigations in Hungarian vetch and field pea should be initiated when the available soil moisture level dropped to 75% of field capacity. Keywords: Hungarian vetch, field pea, aboveground biomass, underground biomass

References

  • Aharoni, N., Blumenfeit, A., Richmand, A. E., 1977. Hormonal Activity ın Detached Lettuce Leaves as Affected By Leaf Water Content. Plant Physiol, 59: 1169-1173.
  • Amede, T., Schubert, S. ve Stahr, K., 2003. Mechanisms of drought resistance in grain legumes, I: Osmotic Adjustment. Ethiop. J. Sci, 26(1): 37-46.
  • Anbessa, Y. ve Bejiga, G., 2002. Evaluation of Ethiopian chickpea landraces for tolerance to drought. Genet. Resources Crop Evaluation, 49: 557-564.
  • Anonim. 1995. Annual Report for 1995, Germplasm Program: Legumes. ICARDA, Aleppo, Syria.
  • Ashraf, M., Arfan, M., Shahbaz, M., Ahmad, A. ve Jamil, A., 2002. Gas exchange characteristics and water relations in some elite okra cultivars under water deficit. Photosynthetica, 40(4): 615- 620.
  • Barber, S. A., 1962. A Diffusion and Mass-Flow Concept of Soil Nutrient Availability. Soil Sci., 93: 39-49.
  • Bloem, J., De Ruiter, P. C., Koopman, G. J., Lebbink, G. ve Brussaard, L., 1992. Microbial numbers and activity in dried and rewetted arable soil under integrated and conventional management. Soil Biol. Biochem., 24: 655-665.
  • Blum, A., 1986. Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2: 199-237.
  • Capell, T., Bassie, L. ve Christou, P., 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. PNAS, 101(26): 9909-9914.
  • Cummins, W. R., 1973. The Metabolism of Aba in Relation to its Reversible Action on Stomata in Leaves of Hordeum vulgare L. Planta, 114: 159-167
  • Deshmukh, D. V., Mhase, L. B. ve Jamadagni, B. M., 2004. Evaluation of chickpea genotypes for drought tolerance. Indian J. Pulses Res., 17: 47-49.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F., 1987. Araştırma ve Deneme Metotları (İstatistik Metotları II). Ankara Üni. Ziraat Fak. Yay.: 1021, Ders Kitabı: 295, 381 s.
  • Eriş, A., 1990. Bahçe Bitkileri Fizyolojisi, Uludağ Üni. Ziraat Fak. Yay. Ders Notları No: 11, Bursa.
  • Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheema, M. A. ve Khaliq, A., 2008. Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic Rice (Oryza sativa L.). J. Agron. Crop Science, 194: 325-333.
  • Gallardo, M., Thompson, R. B., Valdez, L. C. ve Pêrez, C., 2004. Response of stem diameter to water stress in greenhouse-grown vegetable crops. Acta Horticulturae, 664: 253-260.
  • Garg, B. K., 2003. Nutrient uptake and management under drought: Nutrient-moisture interaction. Current. Agriculture, 27(1/2): 1-8.
  • Gong, H., Zhu, X., Chen, K., Wang, S. ve Chenglie, Z., 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2): 313-321.
  • Hsiao, T. C., 1973. Plant Responses to Water Stress. Annu. Rev. Plant Physiol, 24: 519-570.
  • Jaleel, C. A., Manıvannan, P., Sankar, B., Kıshorekumar, A., Gopı, R., Somasundaram, R. ve Panneerselvam, R., 2007. Water deficit stress mitigation by calcium chloride in Catharanthus roseus. Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Biointerfaces, 60: 110-116.
  • Kalefetoğlu, T. ve Ekmekçioğlu, Y., 2005. Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizması. Gazi Üni. Fen Bilimleri Dergisi, 18(4): 723-740.
  • Kozlowski, T. T. ve Pallardy, S. G., 1997. Physiology of Woody Plants, Academic Press, San Diego.
  • Lei, Y., Yin, C. ve Li, C., 2006. Differences in some morphological, physiological, and biochemical responses to drought stres in two contrasting populations of Populus przewalskii. Physiologia Plantarum., 127: 182-191.
  • Levitt, J., 1980. Response of Plants to Environmental Stresses. Academic Pres. Orlando.
  • Liu, F. ve Stutzel, H., 2004. Biomass partitioning, specific leaf area and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1): 15-27.
  • Livne, A., Vaadia, Y., 1965. Stimulation of Transpiration Rate in Barley Leaves by Kinetin and Gibberelic Acid. Physiol. Plant., 18: 658-664.
  • Mackay, A. D. ve Barber, S. A., 1985. Soil moisture effect on potassium uptake by corn. Agronomy J., 77: 519-523.
  • Marais, J. N. ve Wiersma, D., 1975. Phosphorus uptake by soybeans as influenced by moisture stress in the fertilized zone. Agronomy J., 67: 777-781.
  • Martinez, J. P., Silva, H., Ledent, J. F. ve Pinto, M., 2007. Effects of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European J Argonomy, 26(1): 30-38.
  • McKersie, B. D. ve Leshem, Y., 1994. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Netherlands.
  • Öztürk, M. A. ve Seçmen, Ö., 1992. Bitki Ekolojisi. Ege Üni. Fen Fak. Yay. No: 141, İzmir.
  • Reddy, A. R., Chaitanya, K. V., Jutur, P.P. ve Sumıthra, K., 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and Experimental Botany, 52: 33-42.
  • Sağlam, A., 2004. Ağır Kuraklık stresi geçirmiş Ctenanthe setosa bitkisinin yeni kuraklık koşullarına adaptasyon yeteneğinin araştırılması. Karadeniz Teknik Üni., Trabzon (Yüksek Lisans Tezi).
  • Sankar, B., Abdul Jaleel, C., Manıvannan, P., Kıshorekumar, A., Somasundaram, R. ve Panneerselvan, R., 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. under water limited conditions. Biointerfaces, 62: 125-129.
  • Seiffert, S., Kaselowsky, J., Jungk, A. ve Claassen, N., 1995. Observed and calculated potassium uptake by maize as affected by soil water content and bulk density. Agronomy J., 87: 1070- 1077.
  • Shao, H. B, Chu, L. Y., Jaleel, C. A. ve Zhao, C. X., 2008. Water-deficit stress-induced anatomical changes in higher plants. C. R. Biologies, 331; 215-225.
  • Taiz, L. ve Zeiger, E., 2008. Bitki Fizyolojisi. Çeviren: İ. Türkan, Palme Yayıncılık, Ankara, 690s.
Year 2016, Volume: 30 Issue: 1, 46 - 52, 30.06.2016

Abstract

References

  • Aharoni, N., Blumenfeit, A., Richmand, A. E., 1977. Hormonal Activity ın Detached Lettuce Leaves as Affected By Leaf Water Content. Plant Physiol, 59: 1169-1173.
  • Amede, T., Schubert, S. ve Stahr, K., 2003. Mechanisms of drought resistance in grain legumes, I: Osmotic Adjustment. Ethiop. J. Sci, 26(1): 37-46.
  • Anbessa, Y. ve Bejiga, G., 2002. Evaluation of Ethiopian chickpea landraces for tolerance to drought. Genet. Resources Crop Evaluation, 49: 557-564.
  • Anonim. 1995. Annual Report for 1995, Germplasm Program: Legumes. ICARDA, Aleppo, Syria.
  • Ashraf, M., Arfan, M., Shahbaz, M., Ahmad, A. ve Jamil, A., 2002. Gas exchange characteristics and water relations in some elite okra cultivars under water deficit. Photosynthetica, 40(4): 615- 620.
  • Barber, S. A., 1962. A Diffusion and Mass-Flow Concept of Soil Nutrient Availability. Soil Sci., 93: 39-49.
  • Bloem, J., De Ruiter, P. C., Koopman, G. J., Lebbink, G. ve Brussaard, L., 1992. Microbial numbers and activity in dried and rewetted arable soil under integrated and conventional management. Soil Biol. Biochem., 24: 655-665.
  • Blum, A., 1986. Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 2: 199-237.
  • Capell, T., Bassie, L. ve Christou, P., 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. PNAS, 101(26): 9909-9914.
  • Cummins, W. R., 1973. The Metabolism of Aba in Relation to its Reversible Action on Stomata in Leaves of Hordeum vulgare L. Planta, 114: 159-167
  • Deshmukh, D. V., Mhase, L. B. ve Jamadagni, B. M., 2004. Evaluation of chickpea genotypes for drought tolerance. Indian J. Pulses Res., 17: 47-49.
  • Düzgüneş, O., Kesici, T., Kavuncu, O., Gürbüz, F., 1987. Araştırma ve Deneme Metotları (İstatistik Metotları II). Ankara Üni. Ziraat Fak. Yay.: 1021, Ders Kitabı: 295, 381 s.
  • Eriş, A., 1990. Bahçe Bitkileri Fizyolojisi, Uludağ Üni. Ziraat Fak. Yay. Ders Notları No: 11, Bursa.
  • Farooq, M., Basra, S. M. A., Wahid, A., Cheema, Z. A., Cheema, M. A. ve Khaliq, A., 2008. Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic Rice (Oryza sativa L.). J. Agron. Crop Science, 194: 325-333.
  • Gallardo, M., Thompson, R. B., Valdez, L. C. ve Pêrez, C., 2004. Response of stem diameter to water stress in greenhouse-grown vegetable crops. Acta Horticulturae, 664: 253-260.
  • Garg, B. K., 2003. Nutrient uptake and management under drought: Nutrient-moisture interaction. Current. Agriculture, 27(1/2): 1-8.
  • Gong, H., Zhu, X., Chen, K., Wang, S. ve Chenglie, Z., 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2): 313-321.
  • Hsiao, T. C., 1973. Plant Responses to Water Stress. Annu. Rev. Plant Physiol, 24: 519-570.
  • Jaleel, C. A., Manıvannan, P., Sankar, B., Kıshorekumar, A., Gopı, R., Somasundaram, R. ve Panneerselvam, R., 2007. Water deficit stress mitigation by calcium chloride in Catharanthus roseus. Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Biointerfaces, 60: 110-116.
  • Kalefetoğlu, T. ve Ekmekçioğlu, Y., 2005. Bitkilerde kuraklık stresinin etkileri ve dayanıklılık mekanizması. Gazi Üni. Fen Bilimleri Dergisi, 18(4): 723-740.
  • Kozlowski, T. T. ve Pallardy, S. G., 1997. Physiology of Woody Plants, Academic Press, San Diego.
  • Lei, Y., Yin, C. ve Li, C., 2006. Differences in some morphological, physiological, and biochemical responses to drought stres in two contrasting populations of Populus przewalskii. Physiologia Plantarum., 127: 182-191.
  • Levitt, J., 1980. Response of Plants to Environmental Stresses. Academic Pres. Orlando.
  • Liu, F. ve Stutzel, H., 2004. Biomass partitioning, specific leaf area and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1): 15-27.
  • Livne, A., Vaadia, Y., 1965. Stimulation of Transpiration Rate in Barley Leaves by Kinetin and Gibberelic Acid. Physiol. Plant., 18: 658-664.
  • Mackay, A. D. ve Barber, S. A., 1985. Soil moisture effect on potassium uptake by corn. Agronomy J., 77: 519-523.
  • Marais, J. N. ve Wiersma, D., 1975. Phosphorus uptake by soybeans as influenced by moisture stress in the fertilized zone. Agronomy J., 67: 777-781.
  • Martinez, J. P., Silva, H., Ledent, J. F. ve Pinto, M., 2007. Effects of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European J Argonomy, 26(1): 30-38.
  • McKersie, B. D. ve Leshem, Y., 1994. Stress and Stress Coping in Cultivated Plants. Kluwer Academic Publishers, Netherlands.
  • Öztürk, M. A. ve Seçmen, Ö., 1992. Bitki Ekolojisi. Ege Üni. Fen Fak. Yay. No: 141, İzmir.
  • Reddy, A. R., Chaitanya, K. V., Jutur, P.P. ve Sumıthra, K., 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and Experimental Botany, 52: 33-42.
  • Sağlam, A., 2004. Ağır Kuraklık stresi geçirmiş Ctenanthe setosa bitkisinin yeni kuraklık koşullarına adaptasyon yeteneğinin araştırılması. Karadeniz Teknik Üni., Trabzon (Yüksek Lisans Tezi).
  • Sankar, B., Abdul Jaleel, C., Manıvannan, P., Kıshorekumar, A., Somasundaram, R. ve Panneerselvan, R., 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. under water limited conditions. Biointerfaces, 62: 125-129.
  • Seiffert, S., Kaselowsky, J., Jungk, A. ve Claassen, N., 1995. Observed and calculated potassium uptake by maize as affected by soil water content and bulk density. Agronomy J., 87: 1070- 1077.
  • Shao, H. B, Chu, L. Y., Jaleel, C. A. ve Zhao, C. X., 2008. Water-deficit stress-induced anatomical changes in higher plants. C. R. Biologies, 331; 215-225.
  • Taiz, L. ve Zeiger, E., 2008. Bitki Fizyolojisi. Çeviren: İ. Türkan, Palme Yayıncılık, Ankara, 690s.
There are 36 citations in total.

Details

Journal Section Research Articles
Authors

Sema Deniz Özel This is me

Ahmet Gökkuş This is me

Fırat Alatürk This is me

Publication Date June 30, 2016
Published in Issue Year 2016 Volume: 30 Issue: 1

Cite

APA Özel, S. D., Gökkuş, A., & Alatürk, F. (2016). Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.). Alinteri Journal of Agriculture Science, 30(1), 46-52.
AMA Özel SD, Gökkuş A, Alatürk F. Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.). Alinteri Journal of Agriculture Science. June 2016;30(1):46-52.
Chicago Özel, Sema Deniz, Ahmet Gökkuş, and Fırat Alatürk. “Farklı Sulama Seviyelerinin Macar Fiği (Vicia Pannonica Crantz.) Ve Yem Bezelyesinin (Pisum Arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia Pannonica Crantz.) and Field Pea (Pisum Arvense L.)”. Alinteri Journal of Agriculture Science 30, no. 1 (June 2016): 46-52.
EndNote Özel SD, Gökkuş A, Alatürk F (June 1, 2016) Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.). Alinteri Journal of Agriculture Science 30 1 46–52.
IEEE S. D. Özel, A. Gökkuş, and F. Alatürk, “Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.)”, Alinteri Journal of Agriculture Science, vol. 30, no. 1, pp. 46–52, 2016.
ISNAD Özel, Sema Deniz et al. “Farklı Sulama Seviyelerinin Macar Fiği (Vicia Pannonica Crantz.) Ve Yem Bezelyesinin (Pisum Arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia Pannonica Crantz.) and Field Pea (Pisum Arvense L.)”. Alinteri Journal of Agriculture Science 30/1 (June 2016), 46-52.
JAMA Özel SD, Gökkuş A, Alatürk F. Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.). Alinteri Journal of Agriculture Science. 2016;30:46–52.
MLA Özel, Sema Deniz et al. “Farklı Sulama Seviyelerinin Macar Fiği (Vicia Pannonica Crantz.) Ve Yem Bezelyesinin (Pisum Arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia Pannonica Crantz.) and Field Pea (Pisum Arvense L.)”. Alinteri Journal of Agriculture Science, vol. 30, no. 1, 2016, pp. 46-52.
Vancouver Özel SD, Gökkuş A, Alatürk F. Farklı Sulama Seviyelerinin Macar Fiği (Vicia pannonica Crantz.) Ve Yem Bezelyesinin (Pisum arvense L.) Gelişimine Etkileri/Effects of Different Irrigation Levels on Growth of Hungarian Vetch (Vicia pannonica Crantz.) and Field Pea (Pisum arvense L.). Alinteri Journal of Agriculture Science. 2016;30(1):46-52.