Research Article
BibTex RIS Cite

Elektroretinografi Ve Görsel Uyarılmış Potansiyel Ölçümlerinde Zenon Ve LED Işık Kaynaklarının Karşılaştırılması

Year 2019, , 78 - 86, 13.06.2019
https://doi.org/10.21673/anadoluklin.472427

Abstract

Amaç:

 

Elektroretinografi (ERG) ve Görsel Uyarılmış Potansiyeller (GUP) görsel bir uyarana yanıt olarak retinada ve oksipital korteksteki primer görme alanında oluşan elektriksel etkinliği ölçen ve görme yollarını nesnel olarak değerlendirebilen önemli tanı araçlarıdır. Potansiyellerin oluşturulması için zenon ya da ışık yayan diyot (LED) ışık kaynağı kullanılabilmektedir. Farklı fiziksel özelliklere sahip olan bu iki ışık kaynağının GUP ölçümlerinde kullanıldığı az sayıda araştırmada, LED ışık kaynağı kullanılarak yapılan GUP kayıtlarında benzer ya da hafifçe daha düşük genlikler elde edildiği bildirilmiştir. Ancak her iki ışık kaynağı kullanılarak ölçülen ERG ve GUP kayıtlarını eş zamanlı olarak değerlendiren bir araştırma bulunmamaktadır. Bu araştırmada sağlıklı gönüllülerde zenon ve LED ışık kaynağı kullanılarak yapılan ERG ve GUP kayıtlarının karşılaştırılması amaçlanmıştır.

 

Gereç ve Yöntemler:

Araştırmanın örneklemi 21-30 yaş aralığındaki 31 gönüllü katılımcıdan oluşmaktadır. LED ve zenon ışık kaynağı ile hem sağ hem sol gözden sırası randomize edilerek  ayrı ayrı ERG ve GUP kayıtları alındı. ERG kayıtlarındaki “a”, “b”, ve GUP kayıtlarındaki N2, P2 dalgalarının gecikme süreleri ve genlikleri “Eşleştirilmiş-t testi” ile karşılaştırıldı.

 

Bulgular:

 

ERG kayıtlarındaki “a” ve “b” dalgaları ile GUP kayıtlarındaki N2 ve P2 dalgalarının gecikme süreleri arasında fark saptanmadı. LED ışık kaynağı ile yapılan ERG kayıtlarındaki a ve b dalgalarının genlikleri ile GUP kayıtlarındaki N2 dalgasının genliği daha düşük bulundu.

 

Sonuç:

 

LED ışık kaynağı ile zenon lamba ile elde edilenlere büyük ölçüde benzer dalga morfolojisi ve sonuçları olan ERG ve GUP kayıtları elde edilebileceği gösterilmiştir. LED ışık kaynağı ile yapılan GUP ve ERG ölçümlerinde daha düşük genlikler elde edilmesinin önüne geçmek için monokromatik LED kullanılması, özel gözlük kullanılması gibi değişiklikler önerilmiştir. Ayrıca bulunan sonuçların farklı yaş grupları ve görme yolu patolojisi olan bireylerde yinelenmesine gereksinim duyulmaktadır.

References

  • 1. Frishman, L. J. & Wang, M. H. Electroretinogram of human, monkey and mouse. Adler’s Physiology of the Eye. 11th edition. Levin, L. A., Nilsson, S. F. E., Ver Hoeve, J., Wu, S. M., Kaufman, P. L., Alm, A. (eds.) 480–501 (Saunders Elsevier, New York, 2011).
  • 2. Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008 Jun;85(6):386-95.
  • 3. Nasser JA, Del Parigi A, Merhige K, Wolper C, Geliebter A, Hashim SA. Electroretinographic detection of human brain dopamine response to oral food stimulation. Obesity (Silver Spring). 2013 May;21(5):976-80.
  • 4. Holder GE, Celesia GG, Miyake Y, Tobimatsu S, Weleber RG ve International Federation of Clinical Neurophysiology. International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin Neurophysiol. 2010; 121: 1393-1409.
  • 5. Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010 Apr;90: 418-38.
  • 6. Tobimatsu S, Celesia GG. Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol. 2006;117:1414-33.
  • 7. Kantorová E, Žiak P, Kurča E, et al. Visual Evoked Potential and Magnetic Resonance Imaging are More Effective Markers of Multiple Sclerosis Progression than Laser Polarimetry with Variable Corneal Compensation. Frontiers in Human Neuroscience. 2014;8:10.
  • 8. Al-Eajailat SM, Al-Madani Senior MV. The role of Magnetic Resonance Imaging and Visual Evoked Potential in management of optic neuritis. The Pan African Medical Journal. 2014;17:54.
  • 9. Wyatt-McElvain KE, Arruda JE, Rainey VR. Reliability of the Flash Visual Evoked Potential P2: Double-Stimulation Study. Appl Psychophysiol Biofeedback. 2018;43:153-159.
  • 10. Kooi KA, Bagchi BK. Visual evoked responses in man: normative data. Annals of the New York Academy of Sciences, 1964: 112, 254-269.
  • 11. Halliday AM, McDonald WI, Mushin S. Delayed evoked responses in optic neuritis. Lancet 1972: 1, 982-985.
  • 12. McCulloch D, Marmor M, Brigell M, Hamilton R, Holder G, Tzekov R et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Documenta Ophthalmologica. 2014;130(1):1-12.
  • 13. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP; International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016 Aug;133:1-9.
  • 14. Kothari R, Bokariya P, Singh S, Singh R. A Comprehensive Review on Methodologies Employed for Visual Evoked Potentials. Scientifica. 2016;2016:9852194.
  • 15. Gauvin M, Lina JM, Lachapelle P. Advance in ERG analysis: from peak time and amplitude to frequency, power, and energy. Biomed Res Int. 2014; 246096.
  • 16. Shaw NA. Auditory potentials elicited by the grass photic stimulator in the rat. Physiol Behav. 1992; 52: 401-403.
  • 17. Herr DW, Vo KT, King D, Boyes WK. Possible confounding effects of strobe "clicks" on flash evoked potentials in rats. Physiol Behav. 1996; 59: 325-340.
  • 18. American Clinical Neurophysiology Society. Guideline 9B: Guidelines on Visual Evoked Potentials. J Clin Neurophysiol. 2006 ;23:138-56.
  • 19. Lucchese F, Mecacci L. Visual evoked potentials and heart rate during white noise stimulation.Int J Neurosci. 1999; 97: 109-114.
  • 20. Costa e Silva I, Wang AD, Symon L. The application of flash visual evoked potentials during operations on the anterior visual pathways. Neurol Res. 1985 Mar;7:11-6.
  • 21. Hughes JR, Fino JJ, Hart L. The visual evoked potentials to the light emitting diode compared to the flash and pattern reversal stimulus. Int J Neurosci 1989: 47:359–366
  • 22. Pratt H, Martin W, Bleich N, Zaaroor M, Schacham S. A high-intensity, goggle-mounted flash stimulator for short-latency visual evoked potentials. Electroencephalogr Clin Neurophysiol. 1994;92(5):469-472.
  • 23. Pratt H, Bleich N, Martin WH. Short latency visual evoked potentials to flashes from light-emitting diodes. Electroencephalogr Clin Neurophysiol. 1995 Nov;96:502-8.
  • 24. Mizunoya S, Kuniyoshi K, Arai M, Tahara K, Hirose T. Electroretinogram contact lens electrode with tri-color light-emitting diode.Acta Ophthalmol Scand. 2001; 79: 497-500.
  • 25. Link B, Rühl S, Peters A, Jünemann A, Horn FK. Pattern reversal ERG and VEP--comparison of stimulation by LED, monitor and a Maxwellian-view system. Doc Ophthalmol. 2006 Jan;112:1-11.
  • 26. Nilsson BY. Visual evoked responses in multiple sclerosis: comparison of two methods for pattern reversal. J Neurol Neurosurg Psychiatry 1978; 41(6): 499–504.
  • 27. Czopf J. Flash and pattern presentation and pattern reversal evoked potentials in multiple sclerosis. Doc Ophthalmol 1985; 59(2): 129–41.
  • 28. Wright KW, Eriksen KJ, Shors TJ, Ary JP. Recording pattern visual evoked potentials under chloral hydrate sedation. Arch Ophthalmol 1986;104(5):718–21.
  • 29. American Clinical Neurophysiology Society. Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 2006: 23:107–110.
  • 30. Halliday AM, McDonald WI, Mushin J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J. 1973; 4(5893):661-4.
  • 31. Givre SJ, Arezzo JC, Schroeder CE. Effects of wavelength on the timing and laminar distribution of illuminance-evoked activity in macaque V1. Vis Neurosci 1995; 12: 229–239.
  • 32. Farrell DF, Leeman S, Ojemann GA. Study of the human visual cortex: direct cortical evoked potentials and stimulation. J Clin Neurophysiol 2007; 24: 1–10.
  • 33. Subramanian SK, Gaur GS, Narayan SK. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency. Ann Indian Acad Neurol. 2013;16:614-8.

Comparison Of Xenon And LED Light Sources In Electroretinography And Visual Evoked Potential Measurements

Year 2019, , 78 - 86, 13.06.2019
https://doi.org/10.21673/anadoluklin.472427

Abstract

ABSTRACT

 

Introduction:

Electroretinography
(ERG) and Visual Evoked Potentials (VEP) are important diagnostic tests that
measure the electrical activity occurring in the retina and the occipital
cortex after visual stimuli and assess the visual pathways objectively. Xenon
or Light Emitting Diode (LED) light sources could be used to generate the
potentials. A few studies comparing VEP measurements using these two light
sources that have different physical features have found similar or slightly
lower amplitudes when using LED as a light source instead of xenon bulb.
However, no previous studies compared both ERG and VEP measurements using these
two light sources simultaneously. The present study aimed to compare both ERG
and VEP measurements using LED or Xenon as light source in a healthy
population.

 

Materials and Methods:

            The study sample comprised of 31 healthy volunteers aged between 21 and 30
years. ERG and VEP measurements have been recorded from both eyes using LED or
xenon light sources in a random order. Latencies and amplitudes of “a” and “b”
waves in ERG and N2 and P2 waves in VEP measurements were compared using
“Paired T-Test.”

 

Results:

            No differences have been found between latencies of “a” and “b” waves in
ERG and N2 and P2 waves in VEP measurements. Amplitudes of “a” and “b” waves in
ERG and N2 wave in VEP measurements have been found lower in records taken
using LED as a light source.

 

Discussion and Conclusion:

























            Highly similar wave
morphology and results have been found using Xenon and LED light sources in ERG
and VEP measurements.  Different
suggestions such as using monochromatic LED or specific goggles have been made
to increase the amplitudes in ERG and VEP measurements using LED light source.
Moreover, the results of the present study need to be replicated in different
age groups and populations that have visual pathway pathologies.            
              

References

  • 1. Frishman, L. J. & Wang, M. H. Electroretinogram of human, monkey and mouse. Adler’s Physiology of the Eye. 11th edition. Levin, L. A., Nilsson, S. F. E., Ver Hoeve, J., Wu, S. M., Kaufman, P. L., Alm, A. (eds.) 480–501 (Saunders Elsevier, New York, 2011).
  • 2. Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008 Jun;85(6):386-95.
  • 3. Nasser JA, Del Parigi A, Merhige K, Wolper C, Geliebter A, Hashim SA. Electroretinographic detection of human brain dopamine response to oral food stimulation. Obesity (Silver Spring). 2013 May;21(5):976-80.
  • 4. Holder GE, Celesia GG, Miyake Y, Tobimatsu S, Weleber RG ve International Federation of Clinical Neurophysiology. International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin Neurophysiol. 2010; 121: 1393-1409.
  • 5. Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol. 2010 Apr;90: 418-38.
  • 6. Tobimatsu S, Celesia GG. Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol. 2006;117:1414-33.
  • 7. Kantorová E, Žiak P, Kurča E, et al. Visual Evoked Potential and Magnetic Resonance Imaging are More Effective Markers of Multiple Sclerosis Progression than Laser Polarimetry with Variable Corneal Compensation. Frontiers in Human Neuroscience. 2014;8:10.
  • 8. Al-Eajailat SM, Al-Madani Senior MV. The role of Magnetic Resonance Imaging and Visual Evoked Potential in management of optic neuritis. The Pan African Medical Journal. 2014;17:54.
  • 9. Wyatt-McElvain KE, Arruda JE, Rainey VR. Reliability of the Flash Visual Evoked Potential P2: Double-Stimulation Study. Appl Psychophysiol Biofeedback. 2018;43:153-159.
  • 10. Kooi KA, Bagchi BK. Visual evoked responses in man: normative data. Annals of the New York Academy of Sciences, 1964: 112, 254-269.
  • 11. Halliday AM, McDonald WI, Mushin S. Delayed evoked responses in optic neuritis. Lancet 1972: 1, 982-985.
  • 12. McCulloch D, Marmor M, Brigell M, Hamilton R, Holder G, Tzekov R et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Documenta Ophthalmologica. 2014;130(1):1-12.
  • 13. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP; International Society for Clinical Electrophysiology of Vision. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol. 2016 Aug;133:1-9.
  • 14. Kothari R, Bokariya P, Singh S, Singh R. A Comprehensive Review on Methodologies Employed for Visual Evoked Potentials. Scientifica. 2016;2016:9852194.
  • 15. Gauvin M, Lina JM, Lachapelle P. Advance in ERG analysis: from peak time and amplitude to frequency, power, and energy. Biomed Res Int. 2014; 246096.
  • 16. Shaw NA. Auditory potentials elicited by the grass photic stimulator in the rat. Physiol Behav. 1992; 52: 401-403.
  • 17. Herr DW, Vo KT, King D, Boyes WK. Possible confounding effects of strobe "clicks" on flash evoked potentials in rats. Physiol Behav. 1996; 59: 325-340.
  • 18. American Clinical Neurophysiology Society. Guideline 9B: Guidelines on Visual Evoked Potentials. J Clin Neurophysiol. 2006 ;23:138-56.
  • 19. Lucchese F, Mecacci L. Visual evoked potentials and heart rate during white noise stimulation.Int J Neurosci. 1999; 97: 109-114.
  • 20. Costa e Silva I, Wang AD, Symon L. The application of flash visual evoked potentials during operations on the anterior visual pathways. Neurol Res. 1985 Mar;7:11-6.
  • 21. Hughes JR, Fino JJ, Hart L. The visual evoked potentials to the light emitting diode compared to the flash and pattern reversal stimulus. Int J Neurosci 1989: 47:359–366
  • 22. Pratt H, Martin W, Bleich N, Zaaroor M, Schacham S. A high-intensity, goggle-mounted flash stimulator for short-latency visual evoked potentials. Electroencephalogr Clin Neurophysiol. 1994;92(5):469-472.
  • 23. Pratt H, Bleich N, Martin WH. Short latency visual evoked potentials to flashes from light-emitting diodes. Electroencephalogr Clin Neurophysiol. 1995 Nov;96:502-8.
  • 24. Mizunoya S, Kuniyoshi K, Arai M, Tahara K, Hirose T. Electroretinogram contact lens electrode with tri-color light-emitting diode.Acta Ophthalmol Scand. 2001; 79: 497-500.
  • 25. Link B, Rühl S, Peters A, Jünemann A, Horn FK. Pattern reversal ERG and VEP--comparison of stimulation by LED, monitor and a Maxwellian-view system. Doc Ophthalmol. 2006 Jan;112:1-11.
  • 26. Nilsson BY. Visual evoked responses in multiple sclerosis: comparison of two methods for pattern reversal. J Neurol Neurosurg Psychiatry 1978; 41(6): 499–504.
  • 27. Czopf J. Flash and pattern presentation and pattern reversal evoked potentials in multiple sclerosis. Doc Ophthalmol 1985; 59(2): 129–41.
  • 28. Wright KW, Eriksen KJ, Shors TJ, Ary JP. Recording pattern visual evoked potentials under chloral hydrate sedation. Arch Ophthalmol 1986;104(5):718–21.
  • 29. American Clinical Neurophysiology Society. Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 2006: 23:107–110.
  • 30. Halliday AM, McDonald WI, Mushin J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J. 1973; 4(5893):661-4.
  • 31. Givre SJ, Arezzo JC, Schroeder CE. Effects of wavelength on the timing and laminar distribution of illuminance-evoked activity in macaque V1. Vis Neurosci 1995; 12: 229–239.
  • 32. Farrell DF, Leeman S, Ojemann GA. Study of the human visual cortex: direct cortical evoked potentials and stimulation. J Clin Neurophysiol 2007; 24: 1–10.
  • 33. Subramanian SK, Gaur GS, Narayan SK. Low luminance/eyes closed and monochromatic stimulations reduce variability of flash visual evoked potential latency. Ann Indian Acad Neurol. 2013;16:614-8.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section ORIGINAL ARTICLE
Authors

Serkan Aksu 0000-0001-7715-0320

Adnan Kurt This is me 0000-0001-6612-5234

Ahmet Zihni Soyata 0000-0003-3887-5382

Kardelen Türkü Saçar This is me 0000-0002-7729-8795

Semih Taşdelen This is me 0000-0002-2601-4342

Sacit Karamürsel This is me 0000-0002-7534-9392

Publication Date June 13, 2019
Acceptance Date December 9, 2018
Published in Issue Year 2019

Cite

Vancouver Aksu S, Kurt A, Soyata AZ, Saçar KT, Taşdelen S, Karamürsel S. Elektroretinografi Ve Görsel Uyarılmış Potansiyel Ölçümlerinde Zenon Ve LED Işık Kaynaklarının Karşılaştırılması. Anadolu Klin. 2019;24(2):78-86.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.