Review
BibTex RIS Cite

Drug Use in Pregnant Women Infected with COVID-19

Year 2020, Issue: Special Issue on COVID 19, 51 - 58, 20.03.2020
https://doi.org/10.21673/anadoluklin.710736

Abstract

Coronaviruses include some of the agents
that produce the common cold and some viruses that produce more severe
respiratory syndromes. There have been case reports of normal and abnormal
pregnancy outcomes after infection with Coronaviruses. Malformations have not
been described. A new respiratory tract infection caused by coronaviruses was
identified in 2019 and called COVID- 19. The virus causing COVID-19 has been
named 2019- nCoV. There is no specific antiviral treatment for COVID-19.
Oseltamivir and hydroxychloroquine have been used in the treatment of COVID-
19. In patients with pneumonia, azithromycin has also been used in combination
with antiviral treatment. Lopinavir/ ritonavir can be used as second-line
treatment for patients not responding to oseltamivir and hydroxychloroquine
therapy. As yet, there is no evidence that pregnant women who get COVID-19 are
more at risk of serious complications than any other healthy individuals.
Clinicians normally hesitate in treating pregnant women by fear of causing
damage to both the mother and baby. Meanwhile, many pregnant women think the
treatment may be harmful to the baby. Drugs used for COVID-19 should be accurately
evaluated for teratogenic risks. This paper presents a literature review
regarding pregnancy outcomes after the use of therapeutic agents selected in
COVID-19 treatment. After evaluation possible teratogenic effects, symptomatic
prengnant patients with COVID-19 can also be treated with drugs used for other
adult patients.
There
is a need for large-scale epidemiological studies in which the course of the
infection during pregnancy and the effects of the drugs used on pregnancy and
the fetus will be evaluated.

References

  • 1. COVID-19 Erişkin Hasta Yönetimi ve Tedavisi, 2020. https://covid19.saglik.gov.tr/depo/tedavi/COVID19-_Hasta_Yonetimi_ve_Tedavisi.pdf (Erişim Tarihi: 27.03.2020) 2. Gebelik, Doğum ve Lohusalık döneminde “Yeni Koronavirüs Enfeksiyonu 2019” (COVID-19) Hakkında Türk Perinatoloji Derneği Görüşü, 2020. http://www.perinatoloji.org.tr/tr-TR/post/gebelik-dogum-ve-lohusalik-doneminde-yeni-kor (Erişim Tarihi: 27.03.2020) 3. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in none pregnant women: A retrospective review of medical records. Lancet 2020; 395: 809- 815. 4. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr 2020; 9: 51-60. 5. Ward P, Small I, Smith J, et al. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 2005; 55(Suppl 1): i5-i21. 6. Tanaka T, Nakajima K, Murashima A, et al. Safety of neuraminidase inhibitors against novel influenza A (H1N1) in pregnant and breastfeeding women. CMAJ 2009; 181: 55-58. 7. Wollenhaupt M, Chandrasekaran A, Tomianovic D. The safety of oseltamivir in pregnancy: An updated review of post-marketing data. Pharmacoepidemiol Drug Saf 2014; 23: 1035- 1042. 8. Svensson T, Granath F, Stephansson O, et al. Birth outcomes among women exposed to neuraminidase inhibitors during pregnancy. Pharmacoepidemiol Drug Saf. 2011; 20: 1030-1034. 9. Saito S, Minakami H, Nakai A, et al. Outcomes of infants exposed to oseltamivir or zanamivir in utero during pandemic (H1N1) 2009. Am J Obstet Gynecol 2013; 209: 130.e1-9. 10. Xie H-y, Yasseen AS, Xie R-h, et al. Infant outcomes among pregnant women who used oseltamivir for treatment of influenza during the H1N1 epidemic. Am J Obstet Gynecol 2013; 208: 293.e1-7. 11. Dunstan HJ, Mill AC, Stephens S, et al. Pregnancy outcome following maternal use of zanamivir or oseltamivir during the 2009 influenza A/H1N1 pandemic: a national perspective surveillance study. BJOG 2014; 121: 901-906. 12. Beau AB, Hurault-Delarue C, Vial T, et al. Safety of oseltamivir during pregnancy: a comparative study using the EFEMERIS database. BJOG 2014; 121: 895-900. 13. Graner S, Svensson T, Beau AB, et al. Neuraminidase inhibitors during pregnancy and risk of adverse neonatal outcomes and congenital malformations: population based European register study. BMJ 2017; 356: j629. 14. Ehrenstein V, Kristensen NR, Monz BU, et al. Oseltamivir in pregnancy and birth outcomes. BMC Infect Dis 2018; 18: 519. 15. Chambers CD, Johnson D, Xu Ret al. Oseltamivir use in pregnancy: Risk of birth defects, preterm delivery, and small for gestational age infants. Birth Defects Res. 2019; 111: 1487-1493. 16. Van Bennekom CM, Kerr SM, Mitchell AA. Oseltamivir exposure in pregnancy and the risk of specific birth defects. Birth Defects Res 2019; 111:1479-1486. 17. Costedoat-Chalumeau N, Amoura Z, Duhaut P, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum 2003; 48: 3207-3211. 18. Motta M, Tincani A, Faden D et al. Follow-up of infants exposed to hydroxychloroquine given to mothers during pregnancy and lactation. J Perinatol 2005; 25: 86–89. 19. Parke A, West B. Hydroxychloroquine in pregnant patients with systemic lupus erythematosus. J Rheumatol. 1996; 23: 1715-1718. 20. Hart CW, Nauton RF. The ototoxicity of chloroquine phosphate. Arch Otolaryngol 1964;80: 407-412. 21. Cimaz R, Brucato A, Meregalli E, et al. Electroretinograms of children born from mothers treated with hydroxychloroquine (HCQ) during pregnancy and breast-feeding. Lupus 2004; 13: 755. 22. Klinger G, Morad Y, Westall CA et al:. Ocular toxicity and antenatal exposure to chloroquine or hydroxychloroquine for rheumatic diseases. Lancet 2001; 358: 813-814. 23. Osadchy A, Ratnapalan T, Koren G. Ocular toxicity in children exposed in utero to antimalarial drugs: review of the literature. J Rheumatol 2011; 38: 2504-2508. 24. Sperber K, Hom C, Caho CP, et al. Systematic review of hydroxychloroquine use in pregnant patients with autoimmune diseases. Pediatr Rheumatol Online J 2009; 7: 9. 25. Kaplan YC, Ozarfati J, Nickel C, et al. Reproductive outcomes following hydroxychloroquine use for autoimmune diseases: A systematic review and meta-analysis. Br J Clin Pharmacol 2015; 173: 1132-1141. 26. Gotestam Skorpen C, Hoeltzenbein M, Tincani A et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016; 75: 795–810. 27. Centers for Disease Control and Prevention. CDC Yellow Book 2020: Health Information for International Travel. New York: Oxford University Press. 2019. https://wwwnc.cdc.gov/travel/yellowbook/2020/table-of-contents 28. Heikkinen T, Laine K, Neuvonen PJ, et al. The transplacental transfer of the macrolide antibiotics erythromycin, roxithromycin and azithromycin. BJOG 2000; 107:770-775. 29. Savitcheva AM, Tchkhartishvili MG, Arzhanova ON et al. The course and outcome of pregnancy in women with chlamydial infection. J Perinat Med 2001; 29(Suppl 1): 372. 30. Rahangdale L, Guerry S, Bauer HM, et al. An observational cohort study of Chlamydia trachomatis treatment in pregnancy. Sex Transm Dis 2006; 33: 106-110. 31. Cooper WO, Hernadez-Diaz S, Arbogast PG, et al. Antibiotics potentially used in response to bioterrorism and major congenital malformations. Pharmacoepidemiol Drug Saf 2006; 15(Suppl 1): S6- S7. 32. Bar-Oz B, Weber-Schoendorfe C, Berlin M, et al. The outcomes of pregnancy in women exposed to the new macrolides in the first trimester: a prospective, multicentre, observational study. Drug Saf. 2012; 35: 589-98. 33. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Antibiotics potentially used in response to bioterrorism and the risk of major congenital malformations. Paediatr Perinat Epidemiol 2009; 23: 18-28. 34. Muanda FT, Sheehy O, Berard A. Use of antibiotics during pregnancy and risk of spontaneous abortion. CMAJ 2017; 189: E625- E633. 35. Marzolini C, Rudin C, Decosterd LA, et al. The Swiss Mother + Child HIV Cohort Study. Transplacental passage of protease inhibitors at delivery. AIDS 2002; 16: 889-893. 36. Ivanovic J, Nicastri E, Anceschi MM et al. Pregnancy And Newborn Clinical Outcome Group in HIV Infection (PANCOH). Transplacental transfer of antiretroviral drugs and newborn birth weight in HIVinfected pregnant women. Curr HIV Res 2009; 7: 620-625. 37. Simon A, Warszawski J, Kariyawasam D, et al. Association of prenatal and postnatal exposure to lopinavir-ritonavir and adrenal dysfunction among uninfected infants of HIV-infected mothers. JAMA 2011; 306: 70-78. 38. Antiretroviral Pregnancy Registry Steering Committee. Antiretroviral Pregnancy Registry International Interim Report for 1 January 1989 through 31 July 2019. Wilmington, NC: Registry Coordinating Center; 2019. http://www.apregistry.com/forms/interim_report.pdf 39. Sibiude, J, Mandelbrot L, Bianche S, et al. Association between prenatal exposure to antiretroviral therapy and birth defects; and analysis of the French perinatal cohort study (ANRS CO1/CO11). PLoS Med 2014; 11: e1001635. 40. Tookey PA, Thorne C, van Wyk J, et al. Maternal and foetal outcomes among 4118 women with HIV infection treated with lopinavir/ritonavir during pregnancy: analysis of population-based surveillance data from the national study of HIV in pregnancy and childhood in the United Kingdom and Ireland. BMC Infect Dis 2016; 16: 65. 41. Wang L, Zhao H, Cai W, et al. Risk factors associated with preterm delivery and low delivery weight among HIV-exposed neonates in China. Int J Gynaecol Obstet 2018; 142:300-307. 42. Ribavirin aerosol approved for severe cases of RSV in infants and young children. FDA Drug Bulletin 1986; 16:7. 43. Sinclair SM, Jones JK, Miller RK, et al. The Ribavirin pregnancy registry: an interim analysis of potential teratogenicity at the mid-point of enrollment. Drug Saf 2017; 40: 1205-1218. 44. Kirshon B, Faro S, Zurawin RK, et a. Favorable outcome after treatment with amantadine and ribavirin in a pregnancy complicated by influenza pneumonia: a case report. J Reprod Med 1988; 33:399-401. 45. Rezvani M, Koren G. Pregnancy outcome after exposure to injectable ribavirin during embryogenesis. Reprod Toxicol 2006; 21: 113-115. 46. Bianco S, Ettore G. Male periconceptional ribavirin-interferon alpha-2B exposure with no adverse fetal effects. Birth Defects Res A Clin Mol Teratol 2003;67: 77-78. 47. Czeizel AE, Rockenbauer M. Population-based case-control study of teratogenic potential of corticosteroids. Teratology 1997;56: 335-340. 48. Carmichael SL; Shaw GM. Maternal corticosteroid use and risk of selected congenital anomalies. Am J Med Genet 1999;86:242-4. 49. Park-Wyllie L, Mazzotta P, Pastuszak A et al. Birth defects after maternal exposure to corticosteroids: Prospective cohort study and meta-analysis of epidemiological studies. Teratology 2000; 62: 385-392. 50. Pradat P, Robert-Gnansia E, Di Tanna GL, et al. First trimester exposure to corticosteroids and oral clefts. Birth Defects Research (Part A) 2003; 67: 968-970. 51. Fraser FC, Sajoo A. Teratogenic potential of corticosteroids in humans. Teratology 1995; 51: 45-46. 52. Bay Bjorn AM, Ehrenstein V, Hundborg HH, et al. Use of corticosteroids in early pregnancy is not associated with risk of oral clefts and other congenital malformations in offspring. Am J Ther 2014; 21: 73–80. 53. Bandoli G, Palmsten K, Forbess Smith CJ, et al. A Review of Systemic Corticosteroid Use in Pregnancy and the Risk of Select Pregnancy and Birth Outcomes. Rheum Dis Clin North Am. 2017; 43: 489–502. 54. Reinisch JM, Simon NG, Karow WG, et al. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science 1978; 202: 436-438. 55. Scott JR. Fetal growth retardation associated with maternal administration of immunosuppressive drugs. Am J Obstet Gynecol 1977; 128: 668-676. 56. Fine LG, EV Barnett, GM Danovitch, et al. Systemic lupus erythematosus in pregnancy. Ann Intern Med 1981; 94: 667-677. 57. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50: 515-525. 58. Szabo I, Csaba I, Novak P, et al. Single-dose glucocorticoid for prevention of respiratory distress syndrome. Lancet 1977; 2: 243.

COVID-19 Enfeksiyonu Olan Gebelerde İlaç Kullanımı

Year 2020, Issue: Special Issue on COVID 19, 51 - 58, 20.03.2020
https://doi.org/10.21673/anadoluklin.710736

Abstract

Coronavirus ailesi, basit soğuk algınlığından
ciddi solunum yolu sendromlarına kadarçeşitli hastalıklara neden olabilen bir
virüs ailesidir. Gebelikte Coronavirus enfeksiyonlarını takiben normal ve
anormal sonuçlar bildirilmiş olup bebeklerde herhangi bir malformasyon
tanımlanmamıştır. 2019 yılında Coronaviruse bağlı yeni bir solunum yolu
enfeksiyonu tanımlanmış ve COVID-19 adı verilmiştir. COVID-19’a neden olan
virüs ise 2019- nCoV olarak isimlendirilmiştir. COVID-19’un spesifik bir
tedavisi bulunmamakla birlikte semptomatik hastaların tedavisinde oseltamivir
ve hidroksiklorokin kullanılmaktadır. Pnömonili olgularda antiviral tedaviye
azitromisin de eklenebilmektedir. Oseltamivir ve hidroksiklorokine yanıt
vermeyen hastalarda, ikinci seçenek tedavi olarak lopinavir/ ritonavir
kullanılabilmektedir. Bugüne kadar gebe kadınların COVID-19 enfeksiyonuna daha
duyarlı oldukları veya COVID-19 enfeksiyonu olanların daha şiddetli pnömoni
geliştirmeye yatkın olduğuna dair bir kanıt yoktur. Klinisyenler anneye ve
bebeğe zarar verir miyim düşüncesiyle gebe hastayı tedavi etmekten ve ilaç
kullanmaktan çekinebilirler. Aynı zamanda pek çok gebe kadın, tedavinin bebeği
için zararlı olabileceğini düşünebilir. COVID-19 tedavisinde kullanılan ilaçlar
teratojenik riskleri açısından doğru değerlendirilmelidir. Bu literatür
derlemesi, COVID-19 tedavisi için seçilen ilaçların gebelikte kullanımını ve
gebelik sonuçlarını sunmaktadır. Olası teratojenik etkilerin
değerlendirilmesinden sonra, semptomu olan gebe hastalar da diğer yetişkin
bireylere uygulanan ilaçlarla tedavi edilebilir.
Enfeksiyonun gebelikte seyri ve kullanılan ilaçların gebelik
ve fetus üzerine etkilerinin değerlendirileceği geniş çaplı epidemiyolojik
çalışmalara gereksinim vardır. 

References

  • 1. COVID-19 Erişkin Hasta Yönetimi ve Tedavisi, 2020. https://covid19.saglik.gov.tr/depo/tedavi/COVID19-_Hasta_Yonetimi_ve_Tedavisi.pdf (Erişim Tarihi: 27.03.2020) 2. Gebelik, Doğum ve Lohusalık döneminde “Yeni Koronavirüs Enfeksiyonu 2019” (COVID-19) Hakkında Türk Perinatoloji Derneği Görüşü, 2020. http://www.perinatoloji.org.tr/tr-TR/post/gebelik-dogum-ve-lohusalik-doneminde-yeni-kor (Erişim Tarihi: 27.03.2020) 3. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in none pregnant women: A retrospective review of medical records. Lancet 2020; 395: 809- 815. 4. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr 2020; 9: 51-60. 5. Ward P, Small I, Smith J, et al. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 2005; 55(Suppl 1): i5-i21. 6. Tanaka T, Nakajima K, Murashima A, et al. Safety of neuraminidase inhibitors against novel influenza A (H1N1) in pregnant and breastfeeding women. CMAJ 2009; 181: 55-58. 7. Wollenhaupt M, Chandrasekaran A, Tomianovic D. The safety of oseltamivir in pregnancy: An updated review of post-marketing data. Pharmacoepidemiol Drug Saf 2014; 23: 1035- 1042. 8. Svensson T, Granath F, Stephansson O, et al. Birth outcomes among women exposed to neuraminidase inhibitors during pregnancy. Pharmacoepidemiol Drug Saf. 2011; 20: 1030-1034. 9. Saito S, Minakami H, Nakai A, et al. Outcomes of infants exposed to oseltamivir or zanamivir in utero during pandemic (H1N1) 2009. Am J Obstet Gynecol 2013; 209: 130.e1-9. 10. Xie H-y, Yasseen AS, Xie R-h, et al. Infant outcomes among pregnant women who used oseltamivir for treatment of influenza during the H1N1 epidemic. Am J Obstet Gynecol 2013; 208: 293.e1-7. 11. Dunstan HJ, Mill AC, Stephens S, et al. Pregnancy outcome following maternal use of zanamivir or oseltamivir during the 2009 influenza A/H1N1 pandemic: a national perspective surveillance study. BJOG 2014; 121: 901-906. 12. Beau AB, Hurault-Delarue C, Vial T, et al. Safety of oseltamivir during pregnancy: a comparative study using the EFEMERIS database. BJOG 2014; 121: 895-900. 13. Graner S, Svensson T, Beau AB, et al. Neuraminidase inhibitors during pregnancy and risk of adverse neonatal outcomes and congenital malformations: population based European register study. BMJ 2017; 356: j629. 14. Ehrenstein V, Kristensen NR, Monz BU, et al. Oseltamivir in pregnancy and birth outcomes. BMC Infect Dis 2018; 18: 519. 15. Chambers CD, Johnson D, Xu Ret al. Oseltamivir use in pregnancy: Risk of birth defects, preterm delivery, and small for gestational age infants. Birth Defects Res. 2019; 111: 1487-1493. 16. Van Bennekom CM, Kerr SM, Mitchell AA. Oseltamivir exposure in pregnancy and the risk of specific birth defects. Birth Defects Res 2019; 111:1479-1486. 17. Costedoat-Chalumeau N, Amoura Z, Duhaut P, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum 2003; 48: 3207-3211. 18. Motta M, Tincani A, Faden D et al. Follow-up of infants exposed to hydroxychloroquine given to mothers during pregnancy and lactation. J Perinatol 2005; 25: 86–89. 19. Parke A, West B. Hydroxychloroquine in pregnant patients with systemic lupus erythematosus. J Rheumatol. 1996; 23: 1715-1718. 20. Hart CW, Nauton RF. The ototoxicity of chloroquine phosphate. Arch Otolaryngol 1964;80: 407-412. 21. Cimaz R, Brucato A, Meregalli E, et al. Electroretinograms of children born from mothers treated with hydroxychloroquine (HCQ) during pregnancy and breast-feeding. Lupus 2004; 13: 755. 22. Klinger G, Morad Y, Westall CA et al:. Ocular toxicity and antenatal exposure to chloroquine or hydroxychloroquine for rheumatic diseases. Lancet 2001; 358: 813-814. 23. Osadchy A, Ratnapalan T, Koren G. Ocular toxicity in children exposed in utero to antimalarial drugs: review of the literature. J Rheumatol 2011; 38: 2504-2508. 24. Sperber K, Hom C, Caho CP, et al. Systematic review of hydroxychloroquine use in pregnant patients with autoimmune diseases. Pediatr Rheumatol Online J 2009; 7: 9. 25. Kaplan YC, Ozarfati J, Nickel C, et al. Reproductive outcomes following hydroxychloroquine use for autoimmune diseases: A systematic review and meta-analysis. Br J Clin Pharmacol 2015; 173: 1132-1141. 26. Gotestam Skorpen C, Hoeltzenbein M, Tincani A et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016; 75: 795–810. 27. Centers for Disease Control and Prevention. CDC Yellow Book 2020: Health Information for International Travel. New York: Oxford University Press. 2019. https://wwwnc.cdc.gov/travel/yellowbook/2020/table-of-contents 28. Heikkinen T, Laine K, Neuvonen PJ, et al. The transplacental transfer of the macrolide antibiotics erythromycin, roxithromycin and azithromycin. BJOG 2000; 107:770-775. 29. Savitcheva AM, Tchkhartishvili MG, Arzhanova ON et al. The course and outcome of pregnancy in women with chlamydial infection. J Perinat Med 2001; 29(Suppl 1): 372. 30. Rahangdale L, Guerry S, Bauer HM, et al. An observational cohort study of Chlamydia trachomatis treatment in pregnancy. Sex Transm Dis 2006; 33: 106-110. 31. Cooper WO, Hernadez-Diaz S, Arbogast PG, et al. Antibiotics potentially used in response to bioterrorism and major congenital malformations. Pharmacoepidemiol Drug Saf 2006; 15(Suppl 1): S6- S7. 32. Bar-Oz B, Weber-Schoendorfe C, Berlin M, et al. The outcomes of pregnancy in women exposed to the new macrolides in the first trimester: a prospective, multicentre, observational study. Drug Saf. 2012; 35: 589-98. 33. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Antibiotics potentially used in response to bioterrorism and the risk of major congenital malformations. Paediatr Perinat Epidemiol 2009; 23: 18-28. 34. Muanda FT, Sheehy O, Berard A. Use of antibiotics during pregnancy and risk of spontaneous abortion. CMAJ 2017; 189: E625- E633. 35. Marzolini C, Rudin C, Decosterd LA, et al. The Swiss Mother + Child HIV Cohort Study. Transplacental passage of protease inhibitors at delivery. AIDS 2002; 16: 889-893. 36. Ivanovic J, Nicastri E, Anceschi MM et al. Pregnancy And Newborn Clinical Outcome Group in HIV Infection (PANCOH). Transplacental transfer of antiretroviral drugs and newborn birth weight in HIVinfected pregnant women. Curr HIV Res 2009; 7: 620-625. 37. Simon A, Warszawski J, Kariyawasam D, et al. Association of prenatal and postnatal exposure to lopinavir-ritonavir and adrenal dysfunction among uninfected infants of HIV-infected mothers. JAMA 2011; 306: 70-78. 38. Antiretroviral Pregnancy Registry Steering Committee. Antiretroviral Pregnancy Registry International Interim Report for 1 January 1989 through 31 July 2019. Wilmington, NC: Registry Coordinating Center; 2019. http://www.apregistry.com/forms/interim_report.pdf 39. Sibiude, J, Mandelbrot L, Bianche S, et al. Association between prenatal exposure to antiretroviral therapy and birth defects; and analysis of the French perinatal cohort study (ANRS CO1/CO11). PLoS Med 2014; 11: e1001635. 40. Tookey PA, Thorne C, van Wyk J, et al. Maternal and foetal outcomes among 4118 women with HIV infection treated with lopinavir/ritonavir during pregnancy: analysis of population-based surveillance data from the national study of HIV in pregnancy and childhood in the United Kingdom and Ireland. BMC Infect Dis 2016; 16: 65. 41. Wang L, Zhao H, Cai W, et al. Risk factors associated with preterm delivery and low delivery weight among HIV-exposed neonates in China. Int J Gynaecol Obstet 2018; 142:300-307. 42. Ribavirin aerosol approved for severe cases of RSV in infants and young children. FDA Drug Bulletin 1986; 16:7. 43. Sinclair SM, Jones JK, Miller RK, et al. The Ribavirin pregnancy registry: an interim analysis of potential teratogenicity at the mid-point of enrollment. Drug Saf 2017; 40: 1205-1218. 44. Kirshon B, Faro S, Zurawin RK, et a. Favorable outcome after treatment with amantadine and ribavirin in a pregnancy complicated by influenza pneumonia: a case report. J Reprod Med 1988; 33:399-401. 45. Rezvani M, Koren G. Pregnancy outcome after exposure to injectable ribavirin during embryogenesis. Reprod Toxicol 2006; 21: 113-115. 46. Bianco S, Ettore G. Male periconceptional ribavirin-interferon alpha-2B exposure with no adverse fetal effects. Birth Defects Res A Clin Mol Teratol 2003;67: 77-78. 47. Czeizel AE, Rockenbauer M. Population-based case-control study of teratogenic potential of corticosteroids. Teratology 1997;56: 335-340. 48. Carmichael SL; Shaw GM. Maternal corticosteroid use and risk of selected congenital anomalies. Am J Med Genet 1999;86:242-4. 49. Park-Wyllie L, Mazzotta P, Pastuszak A et al. Birth defects after maternal exposure to corticosteroids: Prospective cohort study and meta-analysis of epidemiological studies. Teratology 2000; 62: 385-392. 50. Pradat P, Robert-Gnansia E, Di Tanna GL, et al. First trimester exposure to corticosteroids and oral clefts. Birth Defects Research (Part A) 2003; 67: 968-970. 51. Fraser FC, Sajoo A. Teratogenic potential of corticosteroids in humans. Teratology 1995; 51: 45-46. 52. Bay Bjorn AM, Ehrenstein V, Hundborg HH, et al. Use of corticosteroids in early pregnancy is not associated with risk of oral clefts and other congenital malformations in offspring. Am J Ther 2014; 21: 73–80. 53. Bandoli G, Palmsten K, Forbess Smith CJ, et al. A Review of Systemic Corticosteroid Use in Pregnancy and the Risk of Select Pregnancy and Birth Outcomes. Rheum Dis Clin North Am. 2017; 43: 489–502. 54. Reinisch JM, Simon NG, Karow WG, et al. Prenatal exposure to prednisone in humans and animals retards intrauterine growth. Science 1978; 202: 436-438. 55. Scott JR. Fetal growth retardation associated with maternal administration of immunosuppressive drugs. Am J Obstet Gynecol 1977; 128: 668-676. 56. Fine LG, EV Barnett, GM Danovitch, et al. Systemic lupus erythematosus in pregnancy. Ann Intern Med 1981; 94: 667-677. 57. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 1972; 50: 515-525. 58. Szabo I, Csaba I, Novak P, et al. Single-dose glucocorticoid for prevention of respiratory distress syndrome. Lancet 1977; 2: 243.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section REVİEW
Authors

Zeynep Tırmıkçıoğlu 0000-0002-5639-4665

Publication Date March 20, 2020
Acceptance Date April 3, 2020
Published in Issue Year 2020 Issue: Special Issue on COVID 19

Cite

Vancouver Tırmıkçıoğlu Z. COVID-19 Enfeksiyonu Olan Gebelerde İlaç Kullanımı. Anatolian Clin. 2020;25(Special Issue on COVID 19):51-8.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.