Research Article
BibTex RIS Cite

Classification of human monkeypox with the Fuzzy C-Means Algorithm using image processing methods and Haralick texture parameters

Year 2025, Volume: 30 Issue: 1, 82 - 92, 29.01.2025
https://doi.org/10.21673/anadoluklin.1477313

Abstract

Aim: Human monkeypox can cause skin lesions in the form of blisters of different shapes on various parts of the body. Due to the fact that the skin lesions caused by human monkeypox have a very similar appearance to lesions caused by chickenpox and measles, the study includes images of chickenpox and measles as well as images of human monkeypox. The aim of this study is to distinguish human monkeypox virus skin lesion images from other viral diseases with similar images.

Methods: For this study, the Monkeypox Skin Lesion Dataset, which consists of binary classification data for monkeypox and non-monkeypox (chickenpox, measles) skin lesions, is accessed from the Kaggle.com website. In total, 228 images are processed, with 101 images in the monkeypox group and 127 images in the non-monkeypox group. The images in the Monkeypox Skin Lesion Dataset are processed using image analysis methods and Haralick texture parameters are calculated to create 13 different features for each image. For the classification process in the statistical analysis part of the study, Fuzzy C-Means algorithm is used.

Results: The images used in the study belong to individuals with varying skin tones and from different parts of the body, and the algorithm provides encouraging results in determining the type of skin lesions in the images. The overall classification accuracy rate is 61.8%, and the highest accuracy (76.2%) is achieved in the monkeypox class.

Conclusion: This study demonstrates that images of viral diseases with similar skin lesions can be classified using various image-processing techniques and different statistical methods.

References

  • Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand. 1959;46:156-76.
  • Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis. 2019;13(10):0007791.
  • Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox - a potential threat? A systematic review. PLoS Negl Trop Dis. 2022;16(2):0010141.
  • Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ. 1972;46(5):593-7.
  • Mauldin MR, McCollum AM, Nakazawa YJ, et al. Exportation of monkeypox virus from the African continent. J Infect Dis. 2022;225(8):1367-76.
  • Nguyen PY, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR. Reemergence of human monkeypox and declining population immunity in the context of urbanization, Nigeria, 2017–2020. Emerg Infect Dis. 2021;27:1007-14.
  • Ogoina D, Izibewule JH, Ogunleye A, et al. The 2017 human monkeypox outbreak in Nigeria—Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoS One. 2019;14(4):0214229.
  • CDC. Infection prevention and control of monkeypox in healthcare settings. 2022. Accessed 25 January 2023, https://www.who.int/news-room/fact-sheets/detail/monkeypox
  • WHO. Monkeypox. 2023. Accessed 25 January 2023, https://www.who.int/news-room/fact-sheets/detail/monkeypox
  • Ahsan MM, Uddin MR, Luna SA. Monkeypox image data collection. 2022. Accessed 25 January 2023, https://doi.org/10.48550/arXiv.2206.01774
  • Haque ME, Ahmed MR, Nila RS, Islam S. Classification of human monkeypox disease using deep learning models and attention mechanisms. Electrical Engineering and Systems Science, Image and Video Processing. 2022. Accessed 25 January 2023, https://arxiv.org/abs/2211.15459
  • Ali SN, Ahmed MT, Paul J, Jahan T, et al. Monkeypox skin lesion detection using deep learning models: A feasibility study. 2022. Accessed 25 January 2023, https://doi.org/10.48550/arXiv.2207.03342
  • Sahin VH, Oztel I, Yolcu Oztel G. Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application. J Med Syst. 2022;46(11):1-10.
  • Sadad T, Munir A, Saba T, Hussain A. Fuzzy C-Means and region growing based classification of tumor from mammograms using hybrid texture feature. J Comput Sci. 2018;29:34-45.
  • Rohmayani D, Rahayu AH. Classification of X-ray images of normal, pneumonia, and COVID-19 lungs using the Fuzzy C-means (FCM) algorithm. J Appl Intell Syst. 2022;7(1):16-25.
  • Zayed N, Elnemr HA. Statistical analysis of Haralick texture features to discriminate lung abnormalities. Int J Biomed Imaging. 2015; 2015: 1-7.
  • Kaggle. Monkeypox Skin Lesion Dataset. 2022. Accessed 27 July 2022, https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset
  • Serra J. Image analysis and mathematical morphology. (1982), New York: Acad. Press.
  • Haralick RM, Shanmugam K, Dinstein IH. Textural Features for Image Classification. IEEE Trans Syst Man Cybern. 1973;3(6):610-21.
  • Zulpe N, Pawar V. GLCM textural features for brain tumor classification. Int J Comput Sci Issues. 2012;9(3):354.
  • Miyamoto E, Jr. Merryman T. Fast Calculation of Haralick Texture Features .2008. Accessed 25 January 2023, https://people.inf.ethz.ch/markusp/teaching/18-799B-CMU-spring05/material/eizan-tad.pdf
  • Pham TA. Optimization of Texture Feature Extraction Algorithm. 2010. Accessed 25 January 2023, https://repository.tudelft.nl/islandora/object/uuid%3Aa7924113-c9f8-435d-824f-0232ff6b419c
  • Bezdek JC. Pattern recognition with fuzzy objective function algorithms. (1981) New York: Plenum Press.
  • Bora DJ, Gupta D, Kumar A. A comparative study between fuzzy clustering algorithm and hard clustering algorithm. 2014, Accessed 25 January 2023, https://doi.org/10.48550/arXiv.1404.6059
  • Cinar A, Tuncer T. Segmentation of urban images with Fuzzy C-Means. J Comput Sci Tech. 2021;1(1):01-06.
  • Ferraro MB, Giordani P, Serafini A. fclust: An R package for Fuzzy clustering. The R Journal. 2019;11:2073-4859.
  • Hoppner F, Klawonn F, Rudolf K, Runkler T (1999), Fuzzy cluster analysis: Methods for classification data analysis and image recognition. John Wiley & Sons.

Görüntü işleme yöntemleri ve Haralick doku parametreleri kullanılarak insandaki maymun çiçeği hastalığının Bulanık C-Ortalamalar Algoritması ile sınıflandırılması

Year 2025, Volume: 30 Issue: 1, 82 - 92, 29.01.2025
https://doi.org/10.21673/anadoluklin.1477313

Abstract

Amaç: İnsanlarda görülen maymun çiçeği, vücudun çeşitli yerlerinde farklı şekillerde kabarcıklar şeklinde deri lezyonlarına neden olabilir. İnsan maymun çiçeğinin neden olduğu cilt lezyonları, suçiçeği ve kızamık kaynaklı lezyonlara çok benzer bir görünüme sahiptir. Bu sebeple çalışmada, insan maymun çiçeği görüntülerinin yanı sıra suçiçeği ve kızamık görüntüleri de yer almaktadır. Bu çalışmanın amacı, insan maymun çiçeği virüsü cilt lezyonu görüntülerini, benzer görüntülere sahip diğer viral hastalıklardan ayırmaktır.

Yöntemler: Bu çalışma için maymun çiçeği ve maymun çiçeği olmayan (suçiçeği, kızamık) cilt lezyonlarına yönelik ikili sınıflandırma verilerinden oluşan Maymun Çiçeği Cilt Lezyonu Veri Setine Kaggle.com web sitesinden erişilmektedir. Maymun çiçeği grubunda 101 görüntü ve maymun çiçeği olmayan grupta 127 görüntü olmak üzere toplamda 228 görüntü işlenir. Maymun Çiçeği Cilt Lezyonu Veri Setinde yer alan görüntüler, görüntü analiz yöntemleri kullanılarak işlenmekte ve her görüntü için 13 farklı özellik oluşturacak şekilde Haralick doku parametreleri hesaplanmaktadır. Çalışmanın istatistiksel analiz kısmında sınıflandırma işlemi için Bulanık C-Ortalamalar algoritması kullanılır.

Bulgular: Çalışmada kullanılan görüntüler, farklı cilt tonlarına sahip bireylerden ve vücudun farklı bölgelerinden alınmış olup algoritma, görüntülerdeki cilt lezyonlarının tipinin belirlenmesinde cesaret verici sonuçlar ortaya koymaktadır. Genel sınıflandırma doğruluk oranı %61.8 olarak bulunmakta ve en yüksek doğruluk da (%76.2) maymun çiçeği sınıfında elde edilmektedir.

Sonuç: Bu çalışma, benzer cilt lezyonlarına sahip viral hastalık görüntülerinin, çeşitli görüntü işleme teknikleri ve farklı istatistiksel yöntemler kullanılarak sınıflandırılabileceğini göstermektedir.

References

  • Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand. 1959;46:156-76.
  • Beer EM, Rao VB. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Negl Trop Dis. 2019;13(10):0007791.
  • Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox - a potential threat? A systematic review. PLoS Negl Trop Dis. 2022;16(2):0010141.
  • Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ. 1972;46(5):593-7.
  • Mauldin MR, McCollum AM, Nakazawa YJ, et al. Exportation of monkeypox virus from the African continent. J Infect Dis. 2022;225(8):1367-76.
  • Nguyen PY, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR. Reemergence of human monkeypox and declining population immunity in the context of urbanization, Nigeria, 2017–2020. Emerg Infect Dis. 2021;27:1007-14.
  • Ogoina D, Izibewule JH, Ogunleye A, et al. The 2017 human monkeypox outbreak in Nigeria—Report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoS One. 2019;14(4):0214229.
  • CDC. Infection prevention and control of monkeypox in healthcare settings. 2022. Accessed 25 January 2023, https://www.who.int/news-room/fact-sheets/detail/monkeypox
  • WHO. Monkeypox. 2023. Accessed 25 January 2023, https://www.who.int/news-room/fact-sheets/detail/monkeypox
  • Ahsan MM, Uddin MR, Luna SA. Monkeypox image data collection. 2022. Accessed 25 January 2023, https://doi.org/10.48550/arXiv.2206.01774
  • Haque ME, Ahmed MR, Nila RS, Islam S. Classification of human monkeypox disease using deep learning models and attention mechanisms. Electrical Engineering and Systems Science, Image and Video Processing. 2022. Accessed 25 January 2023, https://arxiv.org/abs/2211.15459
  • Ali SN, Ahmed MT, Paul J, Jahan T, et al. Monkeypox skin lesion detection using deep learning models: A feasibility study. 2022. Accessed 25 January 2023, https://doi.org/10.48550/arXiv.2207.03342
  • Sahin VH, Oztel I, Yolcu Oztel G. Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application. J Med Syst. 2022;46(11):1-10.
  • Sadad T, Munir A, Saba T, Hussain A. Fuzzy C-Means and region growing based classification of tumor from mammograms using hybrid texture feature. J Comput Sci. 2018;29:34-45.
  • Rohmayani D, Rahayu AH. Classification of X-ray images of normal, pneumonia, and COVID-19 lungs using the Fuzzy C-means (FCM) algorithm. J Appl Intell Syst. 2022;7(1):16-25.
  • Zayed N, Elnemr HA. Statistical analysis of Haralick texture features to discriminate lung abnormalities. Int J Biomed Imaging. 2015; 2015: 1-7.
  • Kaggle. Monkeypox Skin Lesion Dataset. 2022. Accessed 27 July 2022, https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset
  • Serra J. Image analysis and mathematical morphology. (1982), New York: Acad. Press.
  • Haralick RM, Shanmugam K, Dinstein IH. Textural Features for Image Classification. IEEE Trans Syst Man Cybern. 1973;3(6):610-21.
  • Zulpe N, Pawar V. GLCM textural features for brain tumor classification. Int J Comput Sci Issues. 2012;9(3):354.
  • Miyamoto E, Jr. Merryman T. Fast Calculation of Haralick Texture Features .2008. Accessed 25 January 2023, https://people.inf.ethz.ch/markusp/teaching/18-799B-CMU-spring05/material/eizan-tad.pdf
  • Pham TA. Optimization of Texture Feature Extraction Algorithm. 2010. Accessed 25 January 2023, https://repository.tudelft.nl/islandora/object/uuid%3Aa7924113-c9f8-435d-824f-0232ff6b419c
  • Bezdek JC. Pattern recognition with fuzzy objective function algorithms. (1981) New York: Plenum Press.
  • Bora DJ, Gupta D, Kumar A. A comparative study between fuzzy clustering algorithm and hard clustering algorithm. 2014, Accessed 25 January 2023, https://doi.org/10.48550/arXiv.1404.6059
  • Cinar A, Tuncer T. Segmentation of urban images with Fuzzy C-Means. J Comput Sci Tech. 2021;1(1):01-06.
  • Ferraro MB, Giordani P, Serafini A. fclust: An R package for Fuzzy clustering. The R Journal. 2019;11:2073-4859.
  • Hoppner F, Klawonn F, Rudolf K, Runkler T (1999), Fuzzy cluster analysis: Methods for classification data analysis and image recognition. John Wiley & Sons.
There are 27 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section ORIGINAL ARTICLE
Authors

Senem Gönenç 0000-0002-6990-1507

Ozge Pasin 0000-0001-6530-0942

Publication Date January 29, 2025
Submission Date May 9, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

Vancouver Gönenç S, Pasin O. Classification of human monkeypox with the Fuzzy C-Means Algorithm using image processing methods and Haralick texture parameters. Anatolian Clin. 2025;30(1):82-9.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.