Research Article
BibTex RIS Cite

Deneysel Kafa Travması Oluşturulan Sıçanlarda Nöronal Hasarı Belirlemede Myelin Basic Protein Etkinliğinin Araştırılması

Year 2023, , 61 - 65, 30.06.2023
https://doi.org/10.54996/anatolianjem.1146160

Abstract

Amaç: Çalışmamızda deneysel olarak oluşturulan kafa travması sonrası sıçanlarda hafif travmatik beyin hasarı meydana getirilmiştir. Amacımız alınan serum örneklerinde myelin basic protein (MBP) düzeyinin akut dönemde travmatik beyin hasarını göstermede tanısal değerini araştırmaktır.

Gereç ve Yöntemler: Çalışmamızda toplam 40 adet erişkin Spraque-Dawley cinsi sıçan kullanılmıştır. Denekler kontrol grubu (n=8) ve 4 ayrı deney grubu (n=8) olarak 5 gruba ayrıldılar. Travma mekanizması oluşturulurken Marmarou ve ark.’nın tanımladığı model modifiye edilerek uygulandı. Yaptığımız modelde ağırlıkları ve yükseklikleri farklı olan bilyeler serbest düşme yöntemiyle bırakıldı. Sırasıyla 0.05, 0.1, 0.2, 0,4 newton şiddetinde travma oluşturulması hedeflendi ve sırasıyla A, B, C, D grubu olarak adlandırıldı. Travma gerçekleştirildikten 2 saat sonra sıçanlardan alınan kanlarda MBP düzeyi araştırıldı.

Bulgular: Kontrol grubu ile karşılaştırıldığında kan MBP seviyeleri A ve B grubunda anlamlı yüksek saptandı. Gruplar kendi arasında karşılaştırıldığında ise B ve C grup arasında anlamlı farklılık vardır. Aynı şekilde A ve C ile A ve D grubu arasında da anlamlı fark saptanmıştır. Dört grup kendi arasında karşılaştırıldığında travma şiddetiyle MBP’nin kandaki düzeyi arasında korelasyon görülmemiştir.

Sonuç: Travma şiddetinin farklı olduğu gruplarda değerlerin farklı olması MBP artışının sekonder sebeplere de bağlı olma ihtimalini güçlendirmektedir. MBP kafa travmasında TBH’yı değerlendirmek açısından değerli bir biyobelirteç olabilir ancak günümüzde MBP için yapılan çalışmalar yeterli değildir.

References

  • Krug E., Injury: A Leading Cause of the Global Burden of Disease. Web site. Available at: http://www.who.int/violence_injury_prevention/index.html. Erişim Tarihi: 20.09.2021.
  • Evans JA, van Wessem KJ, McDougall D, et al. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg 2010 Jan;34(1):158-63.
  • Gökalp HZ, Erongun U. Nöroşirürji Ders Kitabı. Ankara: Mars Matbaası, 1988: 7-31.
  • Polinder S, Cnossen MC, Real RGL, et al. A Multidimensional Approach to Post-concussion Symptoms in Mild Traumatic Brain Injury. Front Neurol. 2018; 9:1113.
  • Brenner D, Elliston C, Hall E, et al. Estimated risks of radiationinduced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176(2):289-96.
  • Dadas A, Washington J, Diaz-Arrastia R, et al. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 2018; 14:2989-3000.
  • Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 1994;80(2):291-300.
  • Özdemir B, Kanat A, Kazdal H. Deneysel Beyin Yaralanma Modelleri. Türk Nöroşir Derg 2020;30(2):308-11.
  • Peden M, McGee K, Sharma G. The injury chart book: a graphical overview of the global burden of injuries. Genova, WHO, 2002.
  • Karasu A, Sabanci PA, Cansever T, et al. Epidemiological study in head injury patients. Turkish Journal of Trauma & Emergency Surgery. 2009 ;15(2):159-63.
  • Karasu A, Sabanci PA, Cansever T, et al. Kafa travmali hastalarda epidemiyolojik çalışma Ulus Travma Acil Cerrahi Derg. 2009;15(2):159-63.
  • Greenwald BD, Burnett DM, Miller MA. Congenital and acquired brain injury. 1. Brain injury: epidemiology and pathophysiology. Arch Phys Med Rehabil. 2003; 84:3-7.
  • Gabbe BJ, Cameron PA, Finch CF. The status of the Glasgow Coma Scale. Emerg Med 2003;15(4):353-60.
  • İffet Y, Ali K, Guven K. Management of cases with head trauma in emergency department. Van Med J 2019; 26(1): 128-34.
  • Papa L, Akinyi L, Liu MC, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 2010;38(1):138-44.
  • Reeves TM, Greer JE, Vanderveer AS, et al. Proteolysis of submembrane cytoskeletal proteins ankyrin-G and αII-spectrin following diffuse brain injury: A role in white matter vulnerability at nodes of ranvier. Brain Pathol 2010; 20:1055–68.
  • Ost M, Nylén K, Csajbok L, et al. Initial CSF total tau correlates with 1- year outcome in patients with traumatic brain injury. Neurology 2006;67(9):1600-4.
  • Ottens AK, Golden EC, Bustamante L, et al. Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 2008;104(5):1404-14.
  • Geyer C, Ulrich A, Gräfe G, et al. Diagnostic value of S100B and neuron-specific enolase in mild pediatric traumatic brain injury. J Neurosurg Pediatr 2009;4(4):339-44.
  • Dvorak F, Haberer I, Sitzer M, et al. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 2009;27(1):37-41.
  • Su E, Bell MJ, Kochanek PM, et al. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia. Neurocrit Care 2012;17(3):401-7.
  • Tomar GS, Singh GP, Lahkar D, et al. New biomarkers in brain trauma. Clin Chim Acta 2018;487:325-9.
  • Liu MC, Akle V, Zheng W et al. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. Journal of Neurochemistry 2006;98:700–12.
  • Sakamoto Y, Kitamura K, Yoshimura K, et al. Complete amino acid sequence of PO protein in bovine peripheral nerve myelin. J Biol Chem 1987;262(9):4208-14.
  • Deber CM, Reynolds SJ. Central nervous system myelin: structure, function, and pathology. Clin Biochem 1991;24(2):113-34.
  • Inouye H, Kirschner DA. Folding and function of the myelin proteins from primary sequence data. J Neurosci Res 1991;28(1):1-17.
  • Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1978;1(8056):113-5.
  • Yamazaki Y, Ohtaka H, Morii S, et al. Diagnostic Significance of Serum Neuron-Specific Enolase and Myelin Basic Protein Assay in Patients with Acute Head Injury. In: Nakamura N, Hashimoto T, Yasue M (eds). Recent Advances in Neurotraumatology. Springer, Tokyo. 1993.
  • Wang Q, Wang Z, Zhu P, et al. Alterations of Myelin Basic Protein and Ultrastructure in the Limbic System at the Early Stage of Trauma-Related Stress Disorder in Dogs. The Journal of Trauma 2004;56:604-10.

Investigation of Myelin Basic Protein Activity in Determining Neuronal Damage in Rats with Experimental Head Trauma

Year 2023, , 61 - 65, 30.06.2023
https://doi.org/10.54996/anatolianjem.1146160

Abstract

Aim: In our study, mild traumatic brain injury was performed in rats after experimentally induced head trauma. Our aim was to investigate the diagnostic value of myelin basic protein (MBP) level in serum samples taken in the acute period of traumatic brain injury.

Material and Methods: A total of 40 adult Spraque-Dawley rats were used in our study. The subjects were divided into 5 groups as the control group (n=8) and 4 different experimental groups (n=8). The model described by Marmarou et al. was modified and applied for the trauma. In the model that we designed, the balls with different weights and heights were released by the free fall method. It was aimed to create trauma with a severity of 0.05, 0.1, 0.2, 0.4 Newtons and the groups were named A, B, C, and D. MBP levels were evaluated in blood samples taken from rats 2 hours after trauma.

Results: Compared with the control group, blood MBP levels were found to be significantly higher in groups A and B. When the groups are compared among themselves, there was a significant difference between the B and C groups. Similarly, a significant difference was found between groups A and C and groups A and D. When the four groups were compared among themselves, no correlation was found between the severity of trauma and the blood level of MBP.

Conclusion: The fact that the values are different in the groups with different trauma severity strengthens the possibility that the increase in MBP is also due to secondary causes. MBP may be a valuable biomarker to evaluate TBI in head trauma, but more studies should be carried out on this field.

References

  • Krug E., Injury: A Leading Cause of the Global Burden of Disease. Web site. Available at: http://www.who.int/violence_injury_prevention/index.html. Erişim Tarihi: 20.09.2021.
  • Evans JA, van Wessem KJ, McDougall D, et al. Epidemiology of traumatic deaths: comprehensive population-based assessment. World J Surg 2010 Jan;34(1):158-63.
  • Gökalp HZ, Erongun U. Nöroşirürji Ders Kitabı. Ankara: Mars Matbaası, 1988: 7-31.
  • Polinder S, Cnossen MC, Real RGL, et al. A Multidimensional Approach to Post-concussion Symptoms in Mild Traumatic Brain Injury. Front Neurol. 2018; 9:1113.
  • Brenner D, Elliston C, Hall E, et al. Estimated risks of radiationinduced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176(2):289-96.
  • Dadas A, Washington J, Diaz-Arrastia R, et al. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 2018; 14:2989-3000.
  • Marmarou A, Foda MA, van den Brink W, et al. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 1994;80(2):291-300.
  • Özdemir B, Kanat A, Kazdal H. Deneysel Beyin Yaralanma Modelleri. Türk Nöroşir Derg 2020;30(2):308-11.
  • Peden M, McGee K, Sharma G. The injury chart book: a graphical overview of the global burden of injuries. Genova, WHO, 2002.
  • Karasu A, Sabanci PA, Cansever T, et al. Epidemiological study in head injury patients. Turkish Journal of Trauma & Emergency Surgery. 2009 ;15(2):159-63.
  • Karasu A, Sabanci PA, Cansever T, et al. Kafa travmali hastalarda epidemiyolojik çalışma Ulus Travma Acil Cerrahi Derg. 2009;15(2):159-63.
  • Greenwald BD, Burnett DM, Miller MA. Congenital and acquired brain injury. 1. Brain injury: epidemiology and pathophysiology. Arch Phys Med Rehabil. 2003; 84:3-7.
  • Gabbe BJ, Cameron PA, Finch CF. The status of the Glasgow Coma Scale. Emerg Med 2003;15(4):353-60.
  • İffet Y, Ali K, Guven K. Management of cases with head trauma in emergency department. Van Med J 2019; 26(1): 128-34.
  • Papa L, Akinyi L, Liu MC, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 2010;38(1):138-44.
  • Reeves TM, Greer JE, Vanderveer AS, et al. Proteolysis of submembrane cytoskeletal proteins ankyrin-G and αII-spectrin following diffuse brain injury: A role in white matter vulnerability at nodes of ranvier. Brain Pathol 2010; 20:1055–68.
  • Ost M, Nylén K, Csajbok L, et al. Initial CSF total tau correlates with 1- year outcome in patients with traumatic brain injury. Neurology 2006;67(9):1600-4.
  • Ottens AK, Golden EC, Bustamante L, et al. Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 2008;104(5):1404-14.
  • Geyer C, Ulrich A, Gräfe G, et al. Diagnostic value of S100B and neuron-specific enolase in mild pediatric traumatic brain injury. J Neurosurg Pediatr 2009;4(4):339-44.
  • Dvorak F, Haberer I, Sitzer M, et al. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 2009;27(1):37-41.
  • Su E, Bell MJ, Kochanek PM, et al. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia. Neurocrit Care 2012;17(3):401-7.
  • Tomar GS, Singh GP, Lahkar D, et al. New biomarkers in brain trauma. Clin Chim Acta 2018;487:325-9.
  • Liu MC, Akle V, Zheng W et al. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. Journal of Neurochemistry 2006;98:700–12.
  • Sakamoto Y, Kitamura K, Yoshimura K, et al. Complete amino acid sequence of PO protein in bovine peripheral nerve myelin. J Biol Chem 1987;262(9):4208-14.
  • Deber CM, Reynolds SJ. Central nervous system myelin: structure, function, and pathology. Clin Biochem 1991;24(2):113-34.
  • Inouye H, Kirschner DA. Folding and function of the myelin proteins from primary sequence data. J Neurosci Res 1991;28(1):1-17.
  • Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1978;1(8056):113-5.
  • Yamazaki Y, Ohtaka H, Morii S, et al. Diagnostic Significance of Serum Neuron-Specific Enolase and Myelin Basic Protein Assay in Patients with Acute Head Injury. In: Nakamura N, Hashimoto T, Yasue M (eds). Recent Advances in Neurotraumatology. Springer, Tokyo. 1993.
  • Wang Q, Wang Z, Zhu P, et al. Alterations of Myelin Basic Protein and Ultrastructure in the Limbic System at the Early Stage of Trauma-Related Stress Disorder in Dogs. The Journal of Trauma 2004;56:604-10.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Original Articles
Authors

Hakan Çelebi 0000-0002-4377-2639

Şahin Aslan 0000-0001-7327-4342

Vahide Aslıhan Durak 0000-0003-0836-7862

Birnur Aydin 0000-0002-8193-474X

Halil İbrahim Çıkrıklar 0000-0002-6253-3350

Early Pub Date July 4, 2023
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

AMA Çelebi H, Aslan Ş, Durak VA, Aydin B, Çıkrıklar Hİ. Deneysel Kafa Travması Oluşturulan Sıçanlarda Nöronal Hasarı Belirlemede Myelin Basic Protein Etkinliğinin Araştırılması. Anatolian J Emerg Med. June 2023;6(2):61-65. doi:10.54996/anatolianjem.1146160