Research Article
BibTex RIS Cite

Cadmium Toxicity and its Effects on Growth and Metal Nutrient Ion Accumulation in Solanaceae Plants

Year 2016, Volume: 22 Issue: 4, 576 - 587, 01.09.2016
https://doi.org/10.1501/Tarimbil_0000001416

Abstract

The effect of cadmium Cd toxicity was studied in four Solanaceae plants tomato, Solanum lycopersicum L.; pepper, Capsicum annuum L.; eggplant, Solanum melongena L., and goldenberry, Physalis peruviana L. grown in greenhouse under natural light conditions. The soil was treated with five levels of Cd 0, 2.5, 5, 10 and 20 mg kg-1 . Except for the tomato, the shoot and root dry biomass decreased with increasing Cd. Plant growth, bioaccumulation and translocation of Cd and accumulation of metal nutrient ions [potassium K , calcium Ca , magnesium Mg , sodium Na , iron Fe , manganese Mn , copper Cu and zinc Zn ] were investigated. On the basis of the percent reductions in the shoot dry biomass, the tomato was determined to be Cd-tolerant, and the other plants Cd-sensitive. The shoot and root Cd contents, uptakes, and total accumulation rate TAR were increased with increasing rate of Cd applied, except for the shoot Cd content and root uptake of the goldenberry. The bioconcentration factor BCF and the translocation factor TF of Cd diminished at all plants, with the exception of the TF for tomato. With respect to Cd translocation, plant species showed a ranking as follows: goldenberry

References

  • Ait Ali N, Bernal M P & Ater M (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil 239: 103-111
  • Alloway B J & Steinnes E (1999). Anthropogenic additions of cadmium to soils. In: M J Laughlin & B R Singh (Eds), Cadmium in Soil and Plants, Kluwer Academic Publishers, Dordrecht (The Netherlands), pp. 97-123
  • Arao T, Takeda H & Nishihara E (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Science and Plant Nutrition 54: 555-559
  • Baker A J M (1981). Accumulators and excluders- strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3: 643-654
  • Belimov A A, Safronova V I, Tsyganov V E, Borisov A Y, Kozhemyakov A P, Stepanok V V, Martenson A M, Gianinazz-Pearson V & Tikhonovich I A (2003). Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131: 25-35
  • Benavides M P, Gallego M S & Tomaro M L (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17: 21-34
  • Clarkson D T & Luttge U (1989). Mineral nutrition -Divalent cations, transport and compartmentalization. Progress in Botany 51: 93-112
  • Dağhan H, Uygur V, Köleli N, Arslan M & Eren A (2013). Transgenik ve transgenik olmayan tütün bitkilerinde ağır metal uygulamalarının azot, fosfor ve potasyum alımına etkisi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 19: 129-139
  • De Maria S, Puschenreiter M & Rivelli A R (2013). Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment 59(6): 254-261
  • Ekmekçi Y, Tanyolaç D & Ayhan B (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology 165: 600-611
  • Fatoba P O & Udoh E G (2008). Effects of some heavy metals on chlorophyll accumulation. Ethnobotanical Leaflets 12: 776-783
  • Gouia H, Ghorbal M H & Meyer C (2000). Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry 38: 629-638
  • Haouari C C, Nasraoui A H, Bouthour D, Houda M D, Daieb C B, Mnai J & Gouia H (2012). Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. African Journal of Plant Science 6(1): 1-7
  • Jiang X J, Lou Y M, Liu Q, Liu S L & Zhao Q G (2004). Effect of cadmium on nutrient uptake and translocation by Indian mustard. Environmental Geochemistry and Health 26: 319-324
  • Krupa Z & Moniak M (1998). The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Science 138: 149-156
  • Kuboi T, Noguchi A & Yazaki J (1986). Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil 92: 405-415
  • Lichtenthaler H K (1987). Chlorophylls and carotenoids: pigments of photosynthetic biometers. Methods in Enzymology 148: 350-382
  • Llamas A C, Ullrich I & Sanz A (2000). Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L.) roots. Plant and Soil 219(1-2): 21-28
  • López-Millán A, Sagardoy R, Solanas M, Abadía A & Abadía J (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany 65: 376-385
  • Ma L Q, Komar K M, Tu C, Zhang W, Cai Y & Kenelly E D (2001). A fern that hyper accumulates arsenic. Nature 409: 579-582
  • Metwally A, Safronova V I, Belimov A A & Dietz K J (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany 56: 167-178
  • Miller R O (2004). High-temperature oxidation: Dry ashing. In: Kalra Y P (Eds), Handbook of Reference Methods for Plant Analysis. CRC Press, Boca Raton, Florida, pp. 53-56
  • Mobin M & Khan N A (2007). Photosynthetic activity, pigment composition and anti oxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology 164: 601-610
  • Moussa H R (2004). Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agronomica Hungarica 52: 269-276
  • Murillo B, Troyo-Diéguez E, García-Hernández J L, Larrinaga-Mayoral J A, Nieto-Garibay A & López- Cortés A (2002). Efecto dela salinidad en genotipos de chicharo de vaca Vigna unguiculata (L.) Walp. durante la etapa de plántula. Agrochimica 46(1-2): 73-87
  • Obata H & Umebayashi M (1997). Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. Journal of Plant Nutrition 20(1): 97-105
  • Padmaja K, Parsad D D K & Parsad A R K (1990). Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedling by cadmium acetate. Photosynthetica 24: 399-404
  • Page A, Miller R & Keeney D (1982). Methods of Soil Analysis. American Society of Agronomy, Inc., Madison WI (USA)
  • Rivetta A, Negrini N & Cocucci M (1997). Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell and Environment 20: 600-608
  • Roth U, Roepenack-Lahaye E V & Clemens S (2006). Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. Journal of Experimental Botany 57(15): 4003-4013
  • Römer W, Egle K, Kang D K, Keller H & Gerke J (2002). L’absorption de Cd par différentes variétés de lupins (Lupinus albus et Lupinus angustifolius) comparéé á celle du ray-grass (Lolium multiflorum) en function de la fertilisation phosphatéé. Agronomie 22: 431-442
  • Sandalio L M, Dalurzo H C, Gomez M, Romero-Puertas M C & del Rio L A (2001). Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52: 2115-2126
  • Sandalio L M, Rodríguez-Serrano M, Río L A & Romero- Puertas M C (2009). Reactive oxygen species and signaling in cadmium toxicity. In: L A del Rio & A Puppo (Eds), Reactive Oxygen Species in Plant Signaling, Springer-Verlag, Berlin, Heidelberg, pp. 175-189
  • Sanitá di-Toppi L & Gabrielli R (1999). Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105-130
  • Sengar R S, Gautam M, Sengar R S, Garg S K, Sengar K & Chaudhary R (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology 196: 73-93
  • Shahbaz M, Ashraf M, Akram N A, Hanif A, Hameed S, Joham S & Rehman R (2011). Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum 33: 1113-1122
  • Shamsi I H, Wei K, Jilani G & Zhang G P (2007). Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. Journal of Zhejiang University Science B 8: 181-188
  • Shamsi I H, Wei K, Zhang G P, Jilani G & Hassan M J (2008). Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biologia Plantarum 52: 165-169
  • Shamsi I H, Jiang L, Wei K, Jilani G, Hua S & Zhang G P (2010). Alleviation of cadmium toxicity in soybean by potassium supplementation. Journal of Plant Nutrition 33: 1926-1938
  • Sharma R K & Agrawal M (2006). Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. Journal of Plant Nutrition 29: 1791-1804
  • Shi G, Liu C, Cai Q, Liu Q & Hou C (2010). Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bulletin of Environmental Contamination and Toxicology 85: 256-263
  • Stobart A K, Griffiths W T, Ameen-Bukhari I & Sherwood R P (1985). The effect of Cd+2 on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum 63: 293-298
  • Stolt P, Hultin S & Asp H (2002). Genetic variation in wheat regarding cadmium accumulation in relation to soil, soil solution cadmium concentration and growing season. In: P Stolt (Eds), Cadmium, a Challenge for Organisms-Agricultural Perspectives, PhD thesis, Dept. of Crop Science, Swedish Uni. of Agric. Sci., Alnarp, Sweden.
  • Thiebeauld O, Soler S, Raigón M D, Prohens J & Nuez F (2005). Variation among Solanaceae crops in cadmium tolerance and accumulation. Agronomy for Sustainable Development 25: 237-241
  • Wu F B, Chen F K, Wei K & Zhang G P (2004). Effects of cadmium on free amino acids, glutathione, and ascorbic acid concentration in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57: 447-454
  • Yang X, Baligar V C, Martens D C & Clark R B (1996). Cadmium effects on influx and transport of mineral nutrients in plant species. Journal of Plant Nutrition 19(3-4): 643-656
  • Zhang G P, Fukami M & Sekimoto H (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Plants Research 77: 93-98

Kadmiyum Toksisitesi ve Kadmiyumun Solanaceae Bitkilerinde Gelişim ve Metal Besin İyonu Akümülasyonuna Etkisi

Year 2016, Volume: 22 Issue: 4, 576 - 587, 01.09.2016
https://doi.org/10.1501/Tarimbil_0000001416

Abstract

Serada ve doğal ışık koşulları altında yetiştirilen dört farklı Solanaceae familyası bitkisinde domates, Solanum lycopersicum L.; biber, Capsicum annuum L.; patlıcan, Solanum melongena L. ve altınçilek, Physalis peruviana L. kadmiyum Cd toksisitesinin etkisi ve bitki gelişimi, Cd’un biyoakümülayonu, Cd’un translokasyonu ile metal besin iyonlarının [potasyum K , kalsiyum Ca , magnezyum Mg , sodyum Na , demir Fe , mangan Mn , bakır Cu ve çinko Zn ] akümülasyonu araştırılmıştır. Bunun için, deneme toprağına beş farklı düzeyde Cd 0, 2.5, 5, 10 ve 20 mg kg-1 uygulanmıştır. Domates hariç, diğer bitkilerin gövde ve kök kuru biyokütleleri artan Cd düzeylerine bağlı olarak azalmıştır. Gövde kuru biyokütlesindeki yüzde azalma temel alındığında; domatesin Cd’a toleranslı ve diğer bitkilerin ise Cd’a duyarlı olduğu tespit edilmiştir. Altınçilek bitkisinde gövde Cd içeriği ve kök Cd alımı hariç, bitkilerde gövde ve kökün Cd içerikleri, Cd alımları ve toplam akümülasyon oranları artan Cd düzeylerine bağlı olarak artmıştır. Domates için translokasyon faktörü hariç tüm bitkilerde, Cd’un biyokonsantrasyon faktörü ve translokasyon faktörü azalmıştır. Kadmiyumun translokasyonuna göre bitkiler; altınçilek

References

  • Ait Ali N, Bernal M P & Ater M (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil 239: 103-111
  • Alloway B J & Steinnes E (1999). Anthropogenic additions of cadmium to soils. In: M J Laughlin & B R Singh (Eds), Cadmium in Soil and Plants, Kluwer Academic Publishers, Dordrecht (The Netherlands), pp. 97-123
  • Arao T, Takeda H & Nishihara E (2008). Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Science and Plant Nutrition 54: 555-559
  • Baker A J M (1981). Accumulators and excluders- strategies in the response of plants to heavy metals. Journal of Plant Nutrition 3: 643-654
  • Belimov A A, Safronova V I, Tsyganov V E, Borisov A Y, Kozhemyakov A P, Stepanok V V, Martenson A M, Gianinazz-Pearson V & Tikhonovich I A (2003). Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.). Euphytica 131: 25-35
  • Benavides M P, Gallego M S & Tomaro M L (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17: 21-34
  • Clarkson D T & Luttge U (1989). Mineral nutrition -Divalent cations, transport and compartmentalization. Progress in Botany 51: 93-112
  • Dağhan H, Uygur V, Köleli N, Arslan M & Eren A (2013). Transgenik ve transgenik olmayan tütün bitkilerinde ağır metal uygulamalarının azot, fosfor ve potasyum alımına etkisi. Tarım Bilimleri Dergisi-Journal of Agricultural Sciences 19: 129-139
  • De Maria S, Puschenreiter M & Rivelli A R (2013). Cadmium accumulation and physiological response of sunflower plants to Cd during the vegetative growing cycle. Plant, Soil and Environment 59(6): 254-261
  • Ekmekçi Y, Tanyolaç D & Ayhan B (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology 165: 600-611
  • Fatoba P O & Udoh E G (2008). Effects of some heavy metals on chlorophyll accumulation. Ethnobotanical Leaflets 12: 776-783
  • Gouia H, Ghorbal M H & Meyer C (2000). Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry 38: 629-638
  • Haouari C C, Nasraoui A H, Bouthour D, Houda M D, Daieb C B, Mnai J & Gouia H (2012). Response of tomato (Solanum lycopersicon) to cadmium toxicity: Growth, element uptake, chlorophyll content and photosynthesis rate. African Journal of Plant Science 6(1): 1-7
  • Jiang X J, Lou Y M, Liu Q, Liu S L & Zhao Q G (2004). Effect of cadmium on nutrient uptake and translocation by Indian mustard. Environmental Geochemistry and Health 26: 319-324
  • Krupa Z & Moniak M (1998). The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Science 138: 149-156
  • Kuboi T, Noguchi A & Yazaki J (1986). Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil 92: 405-415
  • Lichtenthaler H K (1987). Chlorophylls and carotenoids: pigments of photosynthetic biometers. Methods in Enzymology 148: 350-382
  • Llamas A C, Ullrich I & Sanz A (2000). Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L.) roots. Plant and Soil 219(1-2): 21-28
  • López-Millán A, Sagardoy R, Solanas M, Abadía A & Abadía J (2009). Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany 65: 376-385
  • Ma L Q, Komar K M, Tu C, Zhang W, Cai Y & Kenelly E D (2001). A fern that hyper accumulates arsenic. Nature 409: 579-582
  • Metwally A, Safronova V I, Belimov A A & Dietz K J (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany 56: 167-178
  • Miller R O (2004). High-temperature oxidation: Dry ashing. In: Kalra Y P (Eds), Handbook of Reference Methods for Plant Analysis. CRC Press, Boca Raton, Florida, pp. 53-56
  • Mobin M & Khan N A (2007). Photosynthetic activity, pigment composition and anti oxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology 164: 601-610
  • Moussa H R (2004). Effect of cadmium on growth and oxidative metabolism of faba bean plants. Acta Agronomica Hungarica 52: 269-276
  • Murillo B, Troyo-Diéguez E, García-Hernández J L, Larrinaga-Mayoral J A, Nieto-Garibay A & López- Cortés A (2002). Efecto dela salinidad en genotipos de chicharo de vaca Vigna unguiculata (L.) Walp. durante la etapa de plántula. Agrochimica 46(1-2): 73-87
  • Obata H & Umebayashi M (1997). Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. Journal of Plant Nutrition 20(1): 97-105
  • Padmaja K, Parsad D D K & Parsad A R K (1990). Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedling by cadmium acetate. Photosynthetica 24: 399-404
  • Page A, Miller R & Keeney D (1982). Methods of Soil Analysis. American Society of Agronomy, Inc., Madison WI (USA)
  • Rivetta A, Negrini N & Cocucci M (1997). Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell and Environment 20: 600-608
  • Roth U, Roepenack-Lahaye E V & Clemens S (2006). Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. Journal of Experimental Botany 57(15): 4003-4013
  • Römer W, Egle K, Kang D K, Keller H & Gerke J (2002). L’absorption de Cd par différentes variétés de lupins (Lupinus albus et Lupinus angustifolius) comparéé á celle du ray-grass (Lolium multiflorum) en function de la fertilisation phosphatéé. Agronomie 22: 431-442
  • Sandalio L M, Dalurzo H C, Gomez M, Romero-Puertas M C & del Rio L A (2001). Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52: 2115-2126
  • Sandalio L M, Rodríguez-Serrano M, Río L A & Romero- Puertas M C (2009). Reactive oxygen species and signaling in cadmium toxicity. In: L A del Rio & A Puppo (Eds), Reactive Oxygen Species in Plant Signaling, Springer-Verlag, Berlin, Heidelberg, pp. 175-189
  • Sanitá di-Toppi L & Gabrielli R (1999). Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105-130
  • Sengar R S, Gautam M, Sengar R S, Garg S K, Sengar K & Chaudhary R (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology 196: 73-93
  • Shahbaz M, Ashraf M, Akram N A, Hanif A, Hameed S, Joham S & Rehman R (2011). Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum 33: 1113-1122
  • Shamsi I H, Wei K, Jilani G & Zhang G P (2007). Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean. Journal of Zhejiang University Science B 8: 181-188
  • Shamsi I H, Wei K, Zhang G P, Jilani G & Hassan M J (2008). Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biologia Plantarum 52: 165-169
  • Shamsi I H, Jiang L, Wei K, Jilani G, Hua S & Zhang G P (2010). Alleviation of cadmium toxicity in soybean by potassium supplementation. Journal of Plant Nutrition 33: 1926-1938
  • Sharma R K & Agrawal M (2006). Single and combined effects of cadmium and zinc on carrots: Uptake and bioaccumulation. Journal of Plant Nutrition 29: 1791-1804
  • Shi G, Liu C, Cai Q, Liu Q & Hou C (2010). Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidative enzymes. Bulletin of Environmental Contamination and Toxicology 85: 256-263
  • Stobart A K, Griffiths W T, Ameen-Bukhari I & Sherwood R P (1985). The effect of Cd+2 on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum 63: 293-298
  • Stolt P, Hultin S & Asp H (2002). Genetic variation in wheat regarding cadmium accumulation in relation to soil, soil solution cadmium concentration and growing season. In: P Stolt (Eds), Cadmium, a Challenge for Organisms-Agricultural Perspectives, PhD thesis, Dept. of Crop Science, Swedish Uni. of Agric. Sci., Alnarp, Sweden.
  • Thiebeauld O, Soler S, Raigón M D, Prohens J & Nuez F (2005). Variation among Solanaceae crops in cadmium tolerance and accumulation. Agronomy for Sustainable Development 25: 237-241
  • Wu F B, Chen F K, Wei K & Zhang G P (2004). Effects of cadmium on free amino acids, glutathione, and ascorbic acid concentration in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57: 447-454
  • Yang X, Baligar V C, Martens D C & Clark R B (1996). Cadmium effects on influx and transport of mineral nutrients in plant species. Journal of Plant Nutrition 19(3-4): 643-656
  • Zhang G P, Fukami M & Sekimoto H (2002). Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Plants Research 77: 93-98
There are 47 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Yakup Çıkılı This is me

Halil Samet This is me

Sevda Dursun This is me

Publication Date September 1, 2016
Submission Date January 1, 2016
Published in Issue Year 2016 Volume: 22 Issue: 4

Cite

APA Çıkılı, Y., Samet, H., & Dursun, S. (2016). Cadmium Toxicity and its Effects on Growth and Metal Nutrient Ion Accumulation in Solanaceae Plants. Journal of Agricultural Sciences, 22(4), 576-587. https://doi.org/10.1501/Tarimbil_0000001416

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).