Research Article
BibTex RIS Cite

Characterization of Rosemary (Salvia rosmarinus) Essential Oil Obtained by Solvent-Free Microwave Extraction with Kombucha Tea (Anthriscus sylvestris L.) Produced by Adding Guava (Psidium guajava L.) Peel and Pulp

Year 2025, Volume: 31 Issue: 1, 33 - 45, 14.01.2025

Abstract

The study aimed to evaluate the potential of creating a functional beverage by enriching Anthriscus sylvestris (L.) kombucha production with guava peel and pulp, showcasing the variety and richness of the product formulations. This was done due to kombucha being a fermented beverage rich in various bioactive compounds that have significant effects on health and the possibility of enhancing product diversity through different formulations. Thus, the kombucha tea was physicochemical, phytochemical, antioxidant activity, and sensory evaluation during the 15-day fermentation period. The increased acetic acid bacteria and yeast count indicates that Anthriscus sylvestris is a viable substrate for the proliferation of Kombucha symbiotic microbes. Adding guava peel and rosemary oil to kombucha significantly increased its total phenolic, flavonoid, and vitamin C content (P<0.05). Anthriscus sylvestris-guava kombucha has antibacterial properties (zones of inhibition of 18.32 and 17.31 mm against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922, respectively). Moreover, it also provided an inhibitory effect on α-glucosidase and α-amylase, enzymes associated with diabetes. The DPPH, ABTS*+, FRAP, CUPRAC, and ORAC capacities were found to be 66.89-78.90%, 70.83-97.25%, 367-723.15 μmol Trolox/mL, 381.40-460.45 μmol Trolox/mL, and 486.50-737.50 μmol Trolox/mL, respectively. Anthriscus sylvestris kombucha has well-balanced and pleasant sensory properties. These findings indicate that preparing Anthriscus sylvestris kombucha tea with guava may have health effects and that further research is needed to determine potential health benefits.

Ethical Statement

Çalışmamız etik ilkeler doğrultusunda yapılmıştır.

Supporting Institution

Erzincan Binali Yıldırım Üniversitesi

Project Number

FYL-2022-835

References

  • Abduh M Y, Nofitasari D, Rahmawati A, Eryanti A Y & Rosmiati M (2023). Effects of brewing conditions on total phenolic content, antioxidant activity and sensory properties of cascara. Food Chemistry Advances 2: 100183 https://doi.org/10.1016/j.focha.2023.100183
  • Abuduaibifu A & Tamer C E (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation 43(9): e14077. https://doi.org/10.1111/jfpp.14077
  • Ademiluyi A O & Oboh G (2013). Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. Journal of Medicinal Food 16(1): 88-93. https://doi.org/10.1089/jmf.2012.0004
  • Alara O R, Abdurahman N H & Ukaegbu C I (2021). Extraction of phenolic compounds: A review. Current Research in Food Science 4: 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
  • Amjadi S, Armanpour V, Ghorbani M, Tabibiazar M, Soofi M & Roufegarinejad L (2023). Determination of phenolic composition, antioxidant activity, and cytotoxicity characteristics of kombucha beverage containing Echium amoenum. Journal of Food Measurement and Characterization pp. 1-11. https://doi.org/10.1007/s11694-023-01856-1
  • AOAC (2000). (17th ed.), Microbiological methods, Vol. I, Official Methods of Analysis of AOAC International, USA (2000).
  • Apak R, Güçlü K, Özyürek M & Karademir S E (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52(26): 7970-7981. https://doi.org/10.1021/jf048741x
  • Araya J, Esquivel M, Jimenez G, Navia D & Poveda L (2022). Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. Journal of Plastic Film & Sheeting 38(1): 46-71. https://doi.org/10.1177/87560879211023882
  • Asl R M Z, Niakousari M, Gahruie H H, Saharkhiz M J, Khaneghah & A M (2018). Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss: Antioxidant and antimicrobial characteristics. Food Research International 107: 462-469. https://doi.org/10.1016/j.foodres.2018.02.059
  • Ayed L& Hamdi M (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology, 65(4): 2293-2299. https://doi.org/10.1007/s13213-015-1071-8
  • Basli A, Belkacem N & Amrani I (2017) Health benefits of phenolic compounds against cancers. Phenolic Compounds-Biological Activity, 10: 5772-67232. https://dx.doi.org/10.5772/67232
  • Battikh H, Chaieb K, Bakhrouf A & Ammar E (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry 37(2): 231-236. https://doi.org/10.1111/j.1745-4514.2011.00629.x
  • Benzie I F& Strain J J (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology, 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  • Berežni S, Mimica-Dukić N, Domina G, Raimondo F M, Orčić D (2024). Anthriscus sylvestris—Noxious Weed or Sustainable Source of Bioactive Lignans?. Plants 13(8): 1087. https://doi.org/10.3390/plants13081087
  • Burgin A B, Magnusson O T, Singh J, Witte P, Staker B L, Bjornsson J M & Gurney M E (2010). Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nature Biotechnology 28(1): 63-70. https://doi:10.1038/nbt.1598
  • Chakrabortya I & Athmaselvi K A (2014). Changes in physicochemical properties of guava juice during ohmic heating. Journal of Ready to Eat Food 1(4): 152-157
  • Chusak C, Thilavech T & Adisakwattana S (2014). Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. The American Journal of Chinese Medicine 42(02): 315-336. https://doi.org/10.1142/S0192415X14500219
  • Correa M G & Couto J S (2016) Anticancer properties of Psidium guajava-a mini-review. Asian Pacific Journal of Cancer Prevention 17(9): 4199-4204
  • De Filippis F, Troise A D, Vitaglione P& Ercolini D (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology 73: 11-16. https://doi.org/10.1016/j.fm.2018.01.008
  • de Miranda J F, Ruiz L F, Silva C B, Uekane T M, Silva K A, Gonzalez A G M & Lima A R (2022). Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science 87(2): 503-527. https://doi.org/10.1111/1750-3841.16029
  • De Vero L, Gala E, Gullo M, Solieri L, Landi S & Giudici P (2006). Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology 23(8): 809-813. https://doi.org/10.1016/j.fm.2006.01.006
  • Delgado A M, Issaoui M & Chammem N (2019). Analysis of main and healthy phenolic compounds in foods. Journal of AOAC International 102(5): 1356-1364. https://doi.org/10.1093/jaoac/102.5.1356
  • Du C, Li Z, Zhang J, Yin N, Tang L, Li J & Chen X (2023). The protective effect of carnosic acid on dextran sulfate sodium-induced colitis based on metabolomics and gut microbiota analysis. Food Science and Human Wellness 12(4): 1212-1223. https://doi.org/10.1016/j.fshw.2022.10.003
  • Gamboa-Gómez C I, González-Laredo R F, Gallegos-Infante J A, Pérez M D M L, Moreno-Jiménez M R, Flores-Rueda A G & Rocha-Guzmán N E (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology 54(3): 367. https://doi.org/10.17113/ftb.54.03.16.4622
  • Gao J, Xu P, Wang Y, Wang Y & Hochstetter D (2013). Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro. Molecules 18(9): 11614-11623. https://doi.org/10.3390/molecules180911614
  • Geraris Kartelias I, Karantonis H C, Giaouris E, Panagiotakopoulos I & Nasopoulou C (2023). Kombucha Fermentation of Olympus Mountain Tea (Sideritis scardica) Sweetened with Thyme Honey: Physicochemical Analysis and Evaluation of Functional Properties. Foods, 12(18): 3496. https://doi.org/10.3390/foods12183496
  • Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D & Gachhui R (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63-72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
  • Chen H, Jiang H Z, Li Y C, Wei G Q, Geng Y & Ma C Y (2014). Antitumor constituents from Anthriscus sylvestris (L.) Hoffm. Asian Pacific Journal of Cancer Prevention 15(6): 2803-2807. https://doi.org/10.7314/APJCP.2014.15.6.2803
  • He X, Zhang M, Li S T, Li X, Huang Q, Zhang K & Ma Y Y (2022). Alteration of gut microbiota in high‐fat diet‐induced obese mice using carnosic acid from rosemary. Food Science & Nutrition 10(7): 2325-2332. https://doi.org/10.1002/fsn3.2841
  • Hraš A R, Hadolin M, Knez Ž & Bauman D (2000). Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chemistry, 71(2): 229-233. https://doi.org/10.1016/S0308-8146(00)00161-8
  • Jaiarj P, Khoohaswan P, Wongkrajang Y, Peungvicha P, Suriyawong P, Saraya M S& Ruangsomboon O (1999). Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. Journal of Ethnopharmacology 67(2): 203-212. https://doi.org/10.1016/S0378-8741(99)00022-7
  • Janković M, Berežni S& Orčić D (2024). Quantitative Analysis of Lignans from the Fruits of Wild Chervil (Anthriscus sylvestris (L.) Hoffm.). Facta Universitatis, Series: Physics, Chemistry and Technology, 039-046. https://doi.org/10.2298/FUPCT2301039J
  • Jayabalan R, Malbaša, R V, Lončar E S, Vitas J S & Sathishkumar M (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13(4): 538–550. https://doi.org/10.1111/1541-4337.12073
  • Jayabalan R, Subathradevi P, Marimuthu S, Sathishkumar M& Swaminathan K (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109(1): 227-234. https://doi.org/10.1016/j.foodchem.2007.12.037
  • Jiang B & Zhang Z W (2012). Comparison on phenolic compounds and antioxidant properties of Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Molecules 17(8): 8804-8821. https://doi.org/10.3390/molecules17088804
  • Kamath J V, Rahul N, Kumar C A & Lakshmi S M (2008). Psidium guajava L: A review. International Journal of Green Pharmacy (IJGP) 2(1)
  • Kaur H & Ghosh M (2023). Probiotic fermentation enhances bioaccessibility of lycopene, polyphenols and antioxidant capacity of guava fruit (Psidium guajava L). Journal of Agriculture and Food Research 14: 100704. https://doi.org/10.1016/j.jafr.2023.100704
  • Khazi M I, Liaqat F, Liu X, Yan Y & Zhu D (2024). Fermentation, functional analysis, and biological activities of turmeric kombucha. Journal of the Science of Food and Agriculture 104(2): 759-768. 10.1002/jsfa.12962
  • Kim J & Adhikari K (2020). Current trends in kombucha: Marketing perspectives and the need for improved sensory research. Beverages 6(1): 15. https://doi.org/10.3390/beverages6010015
  • Kitwetcharoen H, Phung L T, Klanrit P, Thanonkeo S, Tippayawat P, Yamada M & Thanonkeo P (2023). Kombucha healthy drink-recent advances in production, chemical composition and health benefits. Fermentation 9(1): 48. https://doi.org/10.3390/fermentation9010048
  • Koh K K, Quon M J, Han S H, Lee Y, Kim S J & Shin E K (2010). Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. Journal of the American College of Cardiology 55(12): 1209-1216. https://doi:10.1016/j.jacc.2009.10.053
  • Koulman A, Bos R, Medarde M, Pras N & Quax W J (2001). A fast and simple GC MS method for lignan profiling in Anthriscus sylvestris and biosynthetically related plant species. Planta Medica 67(09): 858-862. https://doi.org/10.1055/s-2001-18849
  • König A, Schwarzinger B, Stadlbauer V, Lanzerstorfer P, Iken M, Schwarzinger C& Weghuber J (2019). Guava (Psidium guajava) fruit extract prepared by supercritical CO2 extraction inhibits intestinal glucose resorption in a double-blind, randomized clinical study. Nutrients 11(7): 1512. https://doi.org/10.3390/nu11071512
  • Leonarski E, Guimarães A C, Cesca K & Poletto P (2022). Production process and characteristics of kombucha fermented from alternative raw materials. Food Bioscience 49: 101841. https://doi.org/10.1016/j.fbio.2022.101841
  • Li Y, Wang S, Lei D, He Y B, Li B & Kang F (2017). Acetic acid-induced preparation of anatase TiO2 mesocrystals at low temperature for enhanced Li-ion storage. Journal of Materials Chemistry A 5(24): 12236-12242. https://doi.org/10.1039/C7TA02361H
  • Li H, Sun J J, Chen G Y, Wang W W, Xie Z T, Tang G F & Wei S D (2016). Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice. Biomedicine & Pharmacotherapy 82: 237-246. https://doi.org/10.1016/j.biopha.2016.04.064
  • Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X & Chen S (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10): 1374. https://doi.org/10.3390/molecules21101374
  • Liu Y L, Cao Y G, Niu Y, Zheng Y J, Chen X, Ren Y J & Feng W S (2023). Diarylpentanoids and phenylpropanoids from the roots of Anthriscus sylvestris (L.) Hoffm. Phytochemistry 216: 113865. https://doi.org/10.1016/j.phytochem.2023.113865
  • Malbaša R V, Lončar E S, Vitas J S & Čanadanović-Brunet J M (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry 127(4): 1727-1731. https://doi.org/10.1016/j.foodchem.2011.02.048
  • Martin‐Piñero M J, García M C, Santos J, Alfaro‐Rodriguez M C & Muñoz J (2020). Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. Journal of the Science of Food and Agriculture 100(10): 3886-3894. https://doi.org/10.1002/jsfa.10430
  • Mazidi S, Rezaei K, Golmakani M, Sharifan A & Rezazadeh S (2012). Antioxidant activity of essential oil from Black zira (Bunium persicum Boiss.) obtained by microwave-assisted hydro-distillation. Journal of Agricultural Science and Technology 14(5): 1013-1022
  • Mengoni E S, Vichera G, Rigano L A, Rodriguez-Puebla M L, Galliano S R, Cafferata E E & Vojnov A A (2011). Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia 82(3): 414-421. https://doi.org/10.1016/j.fitote.2010.11.023
  • Mercadante A Z, Steck A & Pfander H (1999). Carotenoids from guava (Psidium guajava L.): isolation and structure elucidation. Journal of Agriculture and Food Chemistry 47(1): 145-51. https://doi.org/10.1021/jf980405r
  • Miller N J, Rice-Evans C, Davies M J, Gopinathan V & Milner A (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4): 407-412. https://doi.org/10.1042/cs0840407
  • Morales D (2020). Biological activities of kombucha beverages: The need of clinical evidence. Trends in Food Science & Technology 105: 323-333. https://doi.org/10.1016/j.tifs.2020.09.025
  • Nagappan H, Pee P P, Kee S H Y, Ow J T, Yan S W, Chew L Y & Kong K W (2017). Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Research International 99: 950-958. https://doi.org/10.1016/j.foodres.2017.01.023
  • Ninga K A, Sengupta S, Jain A, Desobgo Z S C, Nso E J & De S (2018). Kinetics of enzymatic hydrolysis of pectinaceous matter inguava juice. Journal of Food Engineering 221: 158-166. https://doi.org/10.1016/j.jfoodeng.2017.10.022
  • Oh W K, Lee C H, Lee M S, Bae E Y, Sohn C B, Oh H & Ahn J S (2005). Antidiabetic effects of extracts from Psidium guajava. Journal of Ethnopharmacology 96(3): 411-415. https://doi.org/10.1016/j.jep.2004.09.041
  • Olaru O T, Niţulescu G M, Orțan A & Dinu-Pîrvu C E (2015). Ethnomedicinal, phytochemical and pharmacological profile of Anthriscus sylvestris as an alternative source for anticancer lignans. Molecules 20(8): 15003-15022. https://doi.org/10.3390/molecules200815003
  • Olaru O T, Niţulescu G M, Orţan A, Băbeanu N, Popa O, Ionescu D & Dinupîrvu C E (2016). Polyphenolic content and toxicity assessment of Anthriscus sylyestris Hoffm. Romanian Biotechnological Letters 22(6): 12054.
  • Oliveira J T, da Costa F M, da Silva T G, Simões G D, dos Santos Pereira E, da Costa P Q & Pieniz S (2023). Green tea and kombucha characterization: Phenolic composition, antioxidant capacity and enzymatic inhibition potential. Food Chemistry 408: 135206. https://doi.org/10.1016/j.foodchem.2022.135206
  • Orčić D, Berežni S, Škorić D, Mimica-Dukić N (2021). Comprehensive study of Anthriscus sylvestris lignans. Phytochemistry 192: 112958. https://doi.org/10.1016/j.phytochem.2021.112958
  • Orčić D, Berežni S, Mimica-Dukić N (2022). Phytochemical and biochemical studies of wild chervil (Anthriscus sylvestris). Biologia Serbica 44(1). https://doi.org/10.5281/zenodo.7074977
  • Ortiz-Andrade R R, Garcia-Jimenez S, Castillo-Espana P, Ramirez-Avila G, Villalobos-Molina R, Estrada-Soto S (2007). α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. Journal of Ethnopharmacology 109(1): 48-53. https://doi.org/10.1016/j.jep.2006.07.002
  • Permatasari H K, Nurkolis F, Augusta P S, Mayulu N, Kuswari M, Taslim N A & Gunawan W B (2021). Kombucha tea from seagrapes (Caulerpa racemosa) potential as a functional anti-ageing food: in vitro and in vivo study. Heliyon 7(9). https://doi.org/10.1016/j.heliyon.2021.e07944
  • Proença C, Freitas M, Ribeiro D, Oliveira E F, Sousa J L, Tome S M & Fernandes E (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry 32(1): 1216-1228. https://doi.org/10.1080/14756366.2017.1368503
  • Pure A E & Pure M E (2016). Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Applied Food Biotechnology 3(2): 125-130. https://doi.org/10.22037/afb.v3i2.11138
  • Rebaya A, Belghith S I, Baghdikian B, Leddet V M, Mabrouki F, Olivier E & Ayadi M T (2015). Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). Journal of Applied Pharmaceutical Science 1(01): 052-057. https://doi.org/10.7324/JAPS.2015.50110
  • Sakar E H, Zeroual A, Kasrati A, Gharby S (2023). Combined effects of domestication and extraction technique on essential oil yield, chemical profiling, and antioxidant and antimicrobial activities of rosemary (Rosmarinus officinalis L.). Journal of Food Biochemistry 2023(1): 6308773. https://doi.org/10.1155/2023/6308773
  • Song X, Sui X & Jiang L (2023). Protection Function and Mechanism of Rosemary (Rosmarinus officinalis L.) Extract on the Thermal Oxidative Stability of Vegetable Oils. Foods 12(11): 2177. https://doi.org/10.3390/foods12112177
  • Somsong P, Tiyayon P & Srichamnong W (2017). Antioxidant of green tea and pickle tea product, miang, from northern Thailand. Paper presented at the IV Asia Symposium on Quality Management in Postharvest Systems 1210.
  • Sreeramulu G, Zhu Y & Knol W (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry 48(6): 2589-2594. https://doi.org/10.1021/jf991333m
  • Teoh A L, Heard G & Cox J (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology 95(2): 119-126. https://doi.org/10.1016/j.ijfoodmicro.2003.12.020
  • Varela-Santos E, Ochoa-Martinez A, Tabilo-Munizaga G, Reyes J E, Pérez-Won M, Briones-Labarca V & Morales-Castro J (2012). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies 13: 13-22. https://doi.org/10.1016/j.ifset.2011.10.009
  • Villarreal-Soto S A, Beaufort S, Bouajila J, Souchard J P, Renard T, Rollan S & Taillandier P (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry 83: 44-54. https://doi.org/10.1016/j.procbio.2019.05.004
  • Wang L, Luo Y, Wu Y, Liu Y & Wu Z (2018). Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea. Food Chemistry 264: 189-198. https://doi.org/10.1016/j.foodchem.2018.05.035
  • Xia G, Wang X, Sun H, Qin Y& Fu M (2017). Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway. Free Radical Biology and Medicine 108: 418-432. https://doi.org/10.1016/j.freeradbiomed.2017.03.023
  • Yavari N, Assadi M M, Moghadam M B & Larijani K (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Australian Journal of Basic and Applied Sciences 5(11): 1788-1794. http://www.insipub.com/ajbas/2011/November-2011/1788-1794.pdf
  • Ye M, Yue T & Yuan Y (2014). Evolution of polyphenols and organic acids during the fermentation of apple cider. Journal of the Science of Food and Agriculture 94(14): 2951-2957. https://doi.org/10.1002/jsfa.6639
  • Zhang L & Lu J (2024). Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia, 106074. https://doi.org/10.1016/j.fitote.2024.106074
  • Zhao D & Shah N P (2014). Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT – Food Science and Technology 58(2): 454–462. https://doi.org/10.1016/j.lwt.2014.03.029
  • Zou X & Liu H (2023). A review of meroterpenoids and of their bioactivity from guava (Psidium guajava L.). Journal of Future Foods 3(2): 142-154. https://doi.org/10.1016/j.jfutfo.2022.12.005
  • Zubaidah E, Afgani C A, Kalsum U, Srianta I & Blanc P J (2019). Comparison of in vivo antidiabetes activity of snake fruit Kombucha, black tea Kombucha and metformin. Biocatalysis and Agricultural Biotechnology 17: 465-469. https://doi.org/10.1016/j.bcab.2018.12.026
  • Zubaidah E, Apriyadi T E, Kalsum U, Widyastuti E, Estiasih T, Srianta I & Blanc P J (2018). In vivo evaluation of snake fruit Kombucha as hyperglycemia therapeutic agent. International Food Research Journal 25(1): 453-457. http://www.ifrj.upm.edu.my
Year 2025, Volume: 31 Issue: 1, 33 - 45, 14.01.2025

Abstract

Project Number

FYL-2022-835

References

  • Abduh M Y, Nofitasari D, Rahmawati A, Eryanti A Y & Rosmiati M (2023). Effects of brewing conditions on total phenolic content, antioxidant activity and sensory properties of cascara. Food Chemistry Advances 2: 100183 https://doi.org/10.1016/j.focha.2023.100183
  • Abuduaibifu A & Tamer C E (2019). Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation 43(9): e14077. https://doi.org/10.1111/jfpp.14077
  • Ademiluyi A O & Oboh G (2013). Aqueous extracts of Roselle (Hibiscus sabdariffa Linn.) varieties inhibit α-amylase and α-glucosidase activities in vitro. Journal of Medicinal Food 16(1): 88-93. https://doi.org/10.1089/jmf.2012.0004
  • Alara O R, Abdurahman N H & Ukaegbu C I (2021). Extraction of phenolic compounds: A review. Current Research in Food Science 4: 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
  • Amjadi S, Armanpour V, Ghorbani M, Tabibiazar M, Soofi M & Roufegarinejad L (2023). Determination of phenolic composition, antioxidant activity, and cytotoxicity characteristics of kombucha beverage containing Echium amoenum. Journal of Food Measurement and Characterization pp. 1-11. https://doi.org/10.1007/s11694-023-01856-1
  • AOAC (2000). (17th ed.), Microbiological methods, Vol. I, Official Methods of Analysis of AOAC International, USA (2000).
  • Apak R, Güçlü K, Özyürek M & Karademir S E (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry 52(26): 7970-7981. https://doi.org/10.1021/jf048741x
  • Araya J, Esquivel M, Jimenez G, Navia D & Poveda L (2022). Antimicrobial activity and physicochemical characterization of thermoplastic films based on bitter cassava starch, nanocellulose and rosemary essential oil. Journal of Plastic Film & Sheeting 38(1): 46-71. https://doi.org/10.1177/87560879211023882
  • Asl R M Z, Niakousari M, Gahruie H H, Saharkhiz M J, Khaneghah & A M (2018). Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss: Antioxidant and antimicrobial characteristics. Food Research International 107: 462-469. https://doi.org/10.1016/j.foodres.2018.02.059
  • Ayed L& Hamdi M (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology, 65(4): 2293-2299. https://doi.org/10.1007/s13213-015-1071-8
  • Basli A, Belkacem N & Amrani I (2017) Health benefits of phenolic compounds against cancers. Phenolic Compounds-Biological Activity, 10: 5772-67232. https://dx.doi.org/10.5772/67232
  • Battikh H, Chaieb K, Bakhrouf A & Ammar E (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry 37(2): 231-236. https://doi.org/10.1111/j.1745-4514.2011.00629.x
  • Benzie I F& Strain J J (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology, 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  • Berežni S, Mimica-Dukić N, Domina G, Raimondo F M, Orčić D (2024). Anthriscus sylvestris—Noxious Weed or Sustainable Source of Bioactive Lignans?. Plants 13(8): 1087. https://doi.org/10.3390/plants13081087
  • Burgin A B, Magnusson O T, Singh J, Witte P, Staker B L, Bjornsson J M & Gurney M E (2010). Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nature Biotechnology 28(1): 63-70. https://doi:10.1038/nbt.1598
  • Chakrabortya I & Athmaselvi K A (2014). Changes in physicochemical properties of guava juice during ohmic heating. Journal of Ready to Eat Food 1(4): 152-157
  • Chusak C, Thilavech T & Adisakwattana S (2014). Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. The American Journal of Chinese Medicine 42(02): 315-336. https://doi.org/10.1142/S0192415X14500219
  • Correa M G & Couto J S (2016) Anticancer properties of Psidium guajava-a mini-review. Asian Pacific Journal of Cancer Prevention 17(9): 4199-4204
  • De Filippis F, Troise A D, Vitaglione P& Ercolini D (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology 73: 11-16. https://doi.org/10.1016/j.fm.2018.01.008
  • de Miranda J F, Ruiz L F, Silva C B, Uekane T M, Silva K A, Gonzalez A G M & Lima A R (2022). Kombucha: A review of substrates, regulations, composition, and biological properties. Journal of Food Science 87(2): 503-527. https://doi.org/10.1111/1750-3841.16029
  • De Vero L, Gala E, Gullo M, Solieri L, Landi S & Giudici P (2006). Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology 23(8): 809-813. https://doi.org/10.1016/j.fm.2006.01.006
  • Delgado A M, Issaoui M & Chammem N (2019). Analysis of main and healthy phenolic compounds in foods. Journal of AOAC International 102(5): 1356-1364. https://doi.org/10.1093/jaoac/102.5.1356
  • Du C, Li Z, Zhang J, Yin N, Tang L, Li J & Chen X (2023). The protective effect of carnosic acid on dextran sulfate sodium-induced colitis based on metabolomics and gut microbiota analysis. Food Science and Human Wellness 12(4): 1212-1223. https://doi.org/10.1016/j.fshw.2022.10.003
  • Gamboa-Gómez C I, González-Laredo R F, Gallegos-Infante J A, Pérez M D M L, Moreno-Jiménez M R, Flores-Rueda A G & Rocha-Guzmán N E (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology 54(3): 367. https://doi.org/10.17113/ftb.54.03.16.4622
  • Gao J, Xu P, Wang Y, Wang Y & Hochstetter D (2013). Combined effects of green tea extracts, green tea polyphenols or epigallocatechin gallate with acarbose on inhibition against α-amylase and α-glucosidase in vitro. Molecules 18(9): 11614-11623. https://doi.org/10.3390/molecules180911614
  • Geraris Kartelias I, Karantonis H C, Giaouris E, Panagiotakopoulos I & Nasopoulou C (2023). Kombucha Fermentation of Olympus Mountain Tea (Sideritis scardica) Sweetened with Thyme Honey: Physicochemical Analysis and Evaluation of Functional Properties. Foods, 12(18): 3496. https://doi.org/10.3390/foods12183496
  • Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D & Gachhui R (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63-72. https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
  • Chen H, Jiang H Z, Li Y C, Wei G Q, Geng Y & Ma C Y (2014). Antitumor constituents from Anthriscus sylvestris (L.) Hoffm. Asian Pacific Journal of Cancer Prevention 15(6): 2803-2807. https://doi.org/10.7314/APJCP.2014.15.6.2803
  • He X, Zhang M, Li S T, Li X, Huang Q, Zhang K & Ma Y Y (2022). Alteration of gut microbiota in high‐fat diet‐induced obese mice using carnosic acid from rosemary. Food Science & Nutrition 10(7): 2325-2332. https://doi.org/10.1002/fsn3.2841
  • Hraš A R, Hadolin M, Knez Ž & Bauman D (2000). Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chemistry, 71(2): 229-233. https://doi.org/10.1016/S0308-8146(00)00161-8
  • Jaiarj P, Khoohaswan P, Wongkrajang Y, Peungvicha P, Suriyawong P, Saraya M S& Ruangsomboon O (1999). Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. Journal of Ethnopharmacology 67(2): 203-212. https://doi.org/10.1016/S0378-8741(99)00022-7
  • Janković M, Berežni S& Orčić D (2024). Quantitative Analysis of Lignans from the Fruits of Wild Chervil (Anthriscus sylvestris (L.) Hoffm.). Facta Universitatis, Series: Physics, Chemistry and Technology, 039-046. https://doi.org/10.2298/FUPCT2301039J
  • Jayabalan R, Malbaša, R V, Lončar E S, Vitas J S & Sathishkumar M (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13(4): 538–550. https://doi.org/10.1111/1541-4337.12073
  • Jayabalan R, Subathradevi P, Marimuthu S, Sathishkumar M& Swaminathan K (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109(1): 227-234. https://doi.org/10.1016/j.foodchem.2007.12.037
  • Jiang B & Zhang Z W (2012). Comparison on phenolic compounds and antioxidant properties of Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Molecules 17(8): 8804-8821. https://doi.org/10.3390/molecules17088804
  • Kamath J V, Rahul N, Kumar C A & Lakshmi S M (2008). Psidium guajava L: A review. International Journal of Green Pharmacy (IJGP) 2(1)
  • Kaur H & Ghosh M (2023). Probiotic fermentation enhances bioaccessibility of lycopene, polyphenols and antioxidant capacity of guava fruit (Psidium guajava L). Journal of Agriculture and Food Research 14: 100704. https://doi.org/10.1016/j.jafr.2023.100704
  • Khazi M I, Liaqat F, Liu X, Yan Y & Zhu D (2024). Fermentation, functional analysis, and biological activities of turmeric kombucha. Journal of the Science of Food and Agriculture 104(2): 759-768. 10.1002/jsfa.12962
  • Kim J & Adhikari K (2020). Current trends in kombucha: Marketing perspectives and the need for improved sensory research. Beverages 6(1): 15. https://doi.org/10.3390/beverages6010015
  • Kitwetcharoen H, Phung L T, Klanrit P, Thanonkeo S, Tippayawat P, Yamada M & Thanonkeo P (2023). Kombucha healthy drink-recent advances in production, chemical composition and health benefits. Fermentation 9(1): 48. https://doi.org/10.3390/fermentation9010048
  • Koh K K, Quon M J, Han S H, Lee Y, Kim S J & Shin E K (2010). Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. Journal of the American College of Cardiology 55(12): 1209-1216. https://doi:10.1016/j.jacc.2009.10.053
  • Koulman A, Bos R, Medarde M, Pras N & Quax W J (2001). A fast and simple GC MS method for lignan profiling in Anthriscus sylvestris and biosynthetically related plant species. Planta Medica 67(09): 858-862. https://doi.org/10.1055/s-2001-18849
  • König A, Schwarzinger B, Stadlbauer V, Lanzerstorfer P, Iken M, Schwarzinger C& Weghuber J (2019). Guava (Psidium guajava) fruit extract prepared by supercritical CO2 extraction inhibits intestinal glucose resorption in a double-blind, randomized clinical study. Nutrients 11(7): 1512. https://doi.org/10.3390/nu11071512
  • Leonarski E, Guimarães A C, Cesca K & Poletto P (2022). Production process and characteristics of kombucha fermented from alternative raw materials. Food Bioscience 49: 101841. https://doi.org/10.1016/j.fbio.2022.101841
  • Li Y, Wang S, Lei D, He Y B, Li B & Kang F (2017). Acetic acid-induced preparation of anatase TiO2 mesocrystals at low temperature for enhanced Li-ion storage. Journal of Materials Chemistry A 5(24): 12236-12242. https://doi.org/10.1039/C7TA02361H
  • Li H, Sun J J, Chen G Y, Wang W W, Xie Z T, Tang G F & Wei S D (2016). Carnosic acid nanoparticles suppress liver ischemia/reperfusion injury by inhibition of ROS, Caspases and NF-κB signaling pathway in mice. Biomedicine & Pharmacotherapy 82: 237-246. https://doi.org/10.1016/j.biopha.2016.04.064
  • Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X & Chen S (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10): 1374. https://doi.org/10.3390/molecules21101374
  • Liu Y L, Cao Y G, Niu Y, Zheng Y J, Chen X, Ren Y J & Feng W S (2023). Diarylpentanoids and phenylpropanoids from the roots of Anthriscus sylvestris (L.) Hoffm. Phytochemistry 216: 113865. https://doi.org/10.1016/j.phytochem.2023.113865
  • Malbaša R V, Lončar E S, Vitas J S & Čanadanović-Brunet J M (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry 127(4): 1727-1731. https://doi.org/10.1016/j.foodchem.2011.02.048
  • Martin‐Piñero M J, García M C, Santos J, Alfaro‐Rodriguez M C & Muñoz J (2020). Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. Journal of the Science of Food and Agriculture 100(10): 3886-3894. https://doi.org/10.1002/jsfa.10430
  • Mazidi S, Rezaei K, Golmakani M, Sharifan A & Rezazadeh S (2012). Antioxidant activity of essential oil from Black zira (Bunium persicum Boiss.) obtained by microwave-assisted hydro-distillation. Journal of Agricultural Science and Technology 14(5): 1013-1022
  • Mengoni E S, Vichera G, Rigano L A, Rodriguez-Puebla M L, Galliano S R, Cafferata E E & Vojnov A A (2011). Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia 82(3): 414-421. https://doi.org/10.1016/j.fitote.2010.11.023
  • Mercadante A Z, Steck A & Pfander H (1999). Carotenoids from guava (Psidium guajava L.): isolation and structure elucidation. Journal of Agriculture and Food Chemistry 47(1): 145-51. https://doi.org/10.1021/jf980405r
  • Miller N J, Rice-Evans C, Davies M J, Gopinathan V & Milner A (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4): 407-412. https://doi.org/10.1042/cs0840407
  • Morales D (2020). Biological activities of kombucha beverages: The need of clinical evidence. Trends in Food Science & Technology 105: 323-333. https://doi.org/10.1016/j.tifs.2020.09.025
  • Nagappan H, Pee P P, Kee S H Y, Ow J T, Yan S W, Chew L Y & Kong K W (2017). Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Research International 99: 950-958. https://doi.org/10.1016/j.foodres.2017.01.023
  • Ninga K A, Sengupta S, Jain A, Desobgo Z S C, Nso E J & De S (2018). Kinetics of enzymatic hydrolysis of pectinaceous matter inguava juice. Journal of Food Engineering 221: 158-166. https://doi.org/10.1016/j.jfoodeng.2017.10.022
  • Oh W K, Lee C H, Lee M S, Bae E Y, Sohn C B, Oh H & Ahn J S (2005). Antidiabetic effects of extracts from Psidium guajava. Journal of Ethnopharmacology 96(3): 411-415. https://doi.org/10.1016/j.jep.2004.09.041
  • Olaru O T, Niţulescu G M, Orțan A & Dinu-Pîrvu C E (2015). Ethnomedicinal, phytochemical and pharmacological profile of Anthriscus sylvestris as an alternative source for anticancer lignans. Molecules 20(8): 15003-15022. https://doi.org/10.3390/molecules200815003
  • Olaru O T, Niţulescu G M, Orţan A, Băbeanu N, Popa O, Ionescu D & Dinupîrvu C E (2016). Polyphenolic content and toxicity assessment of Anthriscus sylyestris Hoffm. Romanian Biotechnological Letters 22(6): 12054.
  • Oliveira J T, da Costa F M, da Silva T G, Simões G D, dos Santos Pereira E, da Costa P Q & Pieniz S (2023). Green tea and kombucha characterization: Phenolic composition, antioxidant capacity and enzymatic inhibition potential. Food Chemistry 408: 135206. https://doi.org/10.1016/j.foodchem.2022.135206
  • Orčić D, Berežni S, Škorić D, Mimica-Dukić N (2021). Comprehensive study of Anthriscus sylvestris lignans. Phytochemistry 192: 112958. https://doi.org/10.1016/j.phytochem.2021.112958
  • Orčić D, Berežni S, Mimica-Dukić N (2022). Phytochemical and biochemical studies of wild chervil (Anthriscus sylvestris). Biologia Serbica 44(1). https://doi.org/10.5281/zenodo.7074977
  • Ortiz-Andrade R R, Garcia-Jimenez S, Castillo-Espana P, Ramirez-Avila G, Villalobos-Molina R, Estrada-Soto S (2007). α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: an anti-hyperglycemic agent. Journal of Ethnopharmacology 109(1): 48-53. https://doi.org/10.1016/j.jep.2006.07.002
  • Permatasari H K, Nurkolis F, Augusta P S, Mayulu N, Kuswari M, Taslim N A & Gunawan W B (2021). Kombucha tea from seagrapes (Caulerpa racemosa) potential as a functional anti-ageing food: in vitro and in vivo study. Heliyon 7(9). https://doi.org/10.1016/j.heliyon.2021.e07944
  • Proença C, Freitas M, Ribeiro D, Oliveira E F, Sousa J L, Tome S M & Fernandes E (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry 32(1): 1216-1228. https://doi.org/10.1080/14756366.2017.1368503
  • Pure A E & Pure M E (2016). Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Applied Food Biotechnology 3(2): 125-130. https://doi.org/10.22037/afb.v3i2.11138
  • Rebaya A, Belghith S I, Baghdikian B, Leddet V M, Mabrouki F, Olivier E & Ayadi M T (2015). Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). Journal of Applied Pharmaceutical Science 1(01): 052-057. https://doi.org/10.7324/JAPS.2015.50110
  • Sakar E H, Zeroual A, Kasrati A, Gharby S (2023). Combined effects of domestication and extraction technique on essential oil yield, chemical profiling, and antioxidant and antimicrobial activities of rosemary (Rosmarinus officinalis L.). Journal of Food Biochemistry 2023(1): 6308773. https://doi.org/10.1155/2023/6308773
  • Song X, Sui X & Jiang L (2023). Protection Function and Mechanism of Rosemary (Rosmarinus officinalis L.) Extract on the Thermal Oxidative Stability of Vegetable Oils. Foods 12(11): 2177. https://doi.org/10.3390/foods12112177
  • Somsong P, Tiyayon P & Srichamnong W (2017). Antioxidant of green tea and pickle tea product, miang, from northern Thailand. Paper presented at the IV Asia Symposium on Quality Management in Postharvest Systems 1210.
  • Sreeramulu G, Zhu Y & Knol W (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry 48(6): 2589-2594. https://doi.org/10.1021/jf991333m
  • Teoh A L, Heard G & Cox J (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology 95(2): 119-126. https://doi.org/10.1016/j.ijfoodmicro.2003.12.020
  • Varela-Santos E, Ochoa-Martinez A, Tabilo-Munizaga G, Reyes J E, Pérez-Won M, Briones-Labarca V & Morales-Castro J (2012). Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice. Innovative Food Science & Emerging Technologies 13: 13-22. https://doi.org/10.1016/j.ifset.2011.10.009
  • Villarreal-Soto S A, Beaufort S, Bouajila J, Souchard J P, Renard T, Rollan S & Taillandier P (2019). Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry 83: 44-54. https://doi.org/10.1016/j.procbio.2019.05.004
  • Wang L, Luo Y, Wu Y, Liu Y & Wu Z (2018). Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea. Food Chemistry 264: 189-198. https://doi.org/10.1016/j.foodchem.2018.05.035
  • Xia G, Wang X, Sun H, Qin Y& Fu M (2017). Carnosic acid (CA) attenuates collagen-induced arthritis in db/db mice via inflammation suppression by regulating ROS-dependent p38 pathway. Free Radical Biology and Medicine 108: 418-432. https://doi.org/10.1016/j.freeradbiomed.2017.03.023
  • Yavari N, Assadi M M, Moghadam M B & Larijani K (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Australian Journal of Basic and Applied Sciences 5(11): 1788-1794. http://www.insipub.com/ajbas/2011/November-2011/1788-1794.pdf
  • Ye M, Yue T & Yuan Y (2014). Evolution of polyphenols and organic acids during the fermentation of apple cider. Journal of the Science of Food and Agriculture 94(14): 2951-2957. https://doi.org/10.1002/jsfa.6639
  • Zhang L & Lu J (2024). Rosemary (Rosmarinus officinalis L.) polyphenols and inflammatory bowel diseases: Major phytochemicals, functional properties, and health effects. Fitoterapia, 106074. https://doi.org/10.1016/j.fitote.2024.106074
  • Zhao D & Shah N P (2014). Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation. LWT – Food Science and Technology 58(2): 454–462. https://doi.org/10.1016/j.lwt.2014.03.029
  • Zou X & Liu H (2023). A review of meroterpenoids and of their bioactivity from guava (Psidium guajava L.). Journal of Future Foods 3(2): 142-154. https://doi.org/10.1016/j.jfutfo.2022.12.005
  • Zubaidah E, Afgani C A, Kalsum U, Srianta I & Blanc P J (2019). Comparison of in vivo antidiabetes activity of snake fruit Kombucha, black tea Kombucha and metformin. Biocatalysis and Agricultural Biotechnology 17: 465-469. https://doi.org/10.1016/j.bcab.2018.12.026
  • Zubaidah E, Apriyadi T E, Kalsum U, Widyastuti E, Estiasih T, Srianta I & Blanc P J (2018). In vivo evaluation of snake fruit Kombucha as hyperglycemia therapeutic agent. International Food Research Journal 25(1): 453-457. http://www.ifrj.upm.edu.my
There are 84 citations in total.

Details

Primary Language English
Subjects Fermentation Technology
Journal Section Makaleler
Authors

Filiz Yangılar 0000-0001-6447-2419

Merve Dilara Gerek 0009-0009-7149-7898

Project Number FYL-2022-835
Publication Date January 14, 2025
Submission Date March 28, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2025 Volume: 31 Issue: 1

Cite

APA Yangılar, F., & Gerek, M. D. (2025). Characterization of Rosemary (Salvia rosmarinus) Essential Oil Obtained by Solvent-Free Microwave Extraction with Kombucha Tea (Anthriscus sylvestris L.) Produced by Adding Guava (Psidium guajava L.) Peel and Pulp. Journal of Agricultural Sciences, 31(1), 33-45. https://doi.org/10.15832/ankutbd.1460437

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).