Derleme
BibTex RIS Kaynak Göster

Virusların Duyarlı Konak Hücreleri Enfekte Etmek İçin Kullandıkları Bazı Reseptörler

Yıl 2022, Cilt: 1 Sayı: 1, 13 - 22, 26.12.2022

Öz

Virus-reseptör etkileşimleri, doku tropizmi ve viral patogenezde önemli bir rol oynamaktadır. Bir virus ve onun konakçı hücresi arasındaki etkileşim, virus partikülünün hücre yüzeyindeki spesifik reseptörlere bağlanmasıyla başlar. Bağlanma mekanizmasına aracılık eden viral tutunma proteinleri, önemli bir role sahiptir. Viral tutunma proteini, hücre yüzeyindeki reseptör ile etkileşime girerek konakçı hücrelerin kilidini açan “anahtar” olarak görülebilir. Bu anahtar-kilit model etkileşimleri, virusların konakçı hücrelerine başarılı bir şekilde girmesinde kritik öneme sahiptir. Yüzey glikoproteinleri, kanyon gibi hücresel reseptörlere bağlanan bağlayıcı cepler, uzatılmış halkalar içeren viral kapsid proteinleri viral bağlanma mekanizmasının önemli parçalarındandır. Bu bağlanma mekanizması sırasında virus ve hücre arasında çoklu etkileşimler meydana gelmektedir. Viruslar bir veya daha fazla reseptöre bağlanmak, plazma membran bariyerini aşmak ve konak hücre içerisine girmek için çeşitli stratejiler kullanmaktadır. Enfeksiyonlarda viruslar reseptörleri kullanırken belirli molekül sınıflarını hedeflediği yapılan çalışmalarla tespit edilmiştir. İntegrinler, nektinler ve immunoglobulin üst ailesi üyeleri, virusların yaygın olarak kullandığı reseptörlerden bazılarıdır. Ayrıca virus-konak etkileşim mekanizmalarının açıklığa kavuşturulması açısından keşfedilmeyi bekleyen birçok reseptör vardır. Virolojinin en dinamik alanlarından biri, konak hücreler üzerindeki bu virus reseptörlerinin tanımlanmasıyla ilgilidir. Bu derlemede, veteriner hekimlikte öne çıkanlar başta olmak üzere bazı virus aileleri tarafından konakçı hücreler üzerinde hangi reseptörlerin kullanıldığı güncel çalışmalar ışığında ortaya koyulması amaçlanmıştır.

Kaynakça

  • Adedeji, A. O., Barr, B., Gomez-Lucia, E., & Murphy, B. (2013). A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses, 5(8), 2005-2018. https://doi.org/10.3390/v5082005
  • Albertini, A. A., Baquero, E., Ferlin, A., & Gaudin, Y. (2012). Molecular and cellular aspects of rhabdovirus entry. Viruses, 4(1), 117-139. https://doi.org/10.3390/v4010117
  • Aranda‐Rivera, AK., Cruz‐Gregorio, A., Briones‐Herrera, A., & Pedraza‐Chaverri, J. (2021). Regulation of autophagy by high- and low-risk human papillomaviruses. Reviews in Medical Virology, 31(2), e2169. https://doi.org/10.1002/rmv.2169
  • Arias, C.F., & López, S. (2021). Rotavirus cell entry: not so simple after all. Current Opinion in Virology, 48, 42-48. https://doi.org/10.1016/j.coviro.2021.03.011
  • Arias, C. F., Silva-Ayala, D., & Lopez, S. (2015). Rotavirus entry: a deep journey into the cell with several exits. Journal of Virology, 89, 890-893. https://doi.org/10.1128/JVI.01787-14
  • Bai, L., Sato, H., Kubo, Y., Wada, S., & Aida, Y. (2019). CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. The FASEB Journal, 33(12), 14516-14527. https://doi.org/10.1096/fj.201901528R
  • Blacklaws, B. A. (2012). Small ruminant lentiviruses: immunopathogenesis of Visna-Maedi and caprine arthritis and encephalitis virus. Comparative Immunology, Microbiology and Infectious Diseases, 35(3), 259-269. https://doi.org/10.1016/j.cimid.2011.12.003
  • Borzacchiello, G., Russo, V., Gentile, F., Roperto, F., Venuti, A., Nitsch, L., Campo, M. S., & Roperto, S. (2006). Bovine papillomavirus E5 oncoprotein binds to the activated form of the platelet-derived growth factor beta receptor in naturally occurring bovine urinary bladder tumours. Oncogene, 25, 1251-1260. https://doi.org/10.1038/sj.onc.1209152
  • Böhm, R., Fleming, F. E., Maggioni, A., Dang, V. T., Holloway, G., Coulson, B. S., von Itzstein, M., & Haselhorst, T. (2015). Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nature Communications, 6(1), 1-12. https://doi.org/10.1038/ncomms6907
  • Cheng, Y. R., Li, X., Zhao, X., & Lin, H. (2021). Cell Entry of Animal Coronaviruses. Viruses, 13(10), 1977. https://doi.org/10.3390/v13101977
  • Coffin, J., Blomberg, J., Fan, H., Gifford, R., Hatziioannou, T., Lindemann, D., Mayer, J., Stoye, J., Tristem, M., & Johnson, W. (2021). ICTV Virus Taxonomy Profile: Retroviridae 2021. Journal of General Virology, 102(12). 10.1099/jgv.0.001712
  • Coil, D. A., & Miller, A. D. (2004). Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. Journal of Virology, 78, 10920-10926. https://doi.org/10.1128/JVI.78.20.10920-10926.2004
  • Cotmore, S. F., Agbandje-McKenna, M., Chiorini, J. A., Mukha, D. V., Pintel, D. J., Qiu, J., Soderlund-Venermo, M., Tattersall, P., Tijssen, P., Gatherer, D., & Davison, A. J. (2014). The family Parvoviridae. Archives of Virology, 159, 1239-1247. https://doi.org/10.1007/s00705-013-1914-1
  • Coulson, B. S. (2015). Expanding diversity of glycan receptor usage by rotaviruses. Current Opinion in Virology, 15, 90-96. https://doi.org/10.1016/j.coviro.2015.08.012
  • Couñago, R. M., Knapp, K. M., Nakatani, Y., Fleming, S. B., Corbett, M., Wise, L. M., Mercer, A. A., & Krause, K. L. (2015). Structures of Orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity. Structure, 23(7), 1199-1213. https://doi.org/10.1016/j.str.2015.04.023
  • Crespo, H., Reina, R., Glaria, I., Ramírez, H., de Andrés, X., Jáuregui, P., Luján, L., Martínez-Pomares, L., Amorena, B., & de Andrés, D. F. (2011). Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection. Veterinary Research, 42(1), 1-10. https://doi.org/10.1186/1297-9716-42-28
  • De Salort, J., Sintes, J., Llinàs, L., Matesanz-Isabel, J., & Engel, P. (2011). Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells. Immunology Letters, 134, 129-136. https://doi.org/10.1016/j.imlet.2010.09.021
  • Di Teodoro, G., Bortolami, A., Teodori, L., Leone, A., D’Alterio, N., Malatesta, D., Rosamilia, A., Colaianni, M. L., Petrini, A., Terregino, C., Savini, G., Bonfante, F., & Lorusso, A. (2019). Replication kinetics and cellular tropism of emerging reoviruses in sheep and swine respiratory ex vivo organ cultures. Veterinary microbiology, 234, 119-127. https://doi.org/10.1016/j.vetmic.2019.06.001
  • Eisenberg, R. J., Atanasiu, D., Cairns, T. M., Gallagher, J. R., Krummenacher, C., & Cohen, G. H. (2012). Herpes virus fusion and entry: A story with many characters. Viruses, 4, 800-832. https://doi.org/10.3390/v4050800
  • Etessami, R., Conzelmann, K. K., Fadai-Ghotbi, B., Natelson, B., Tsiang, H., & Ceccaldi, P. E. (2000). Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. Journal of General Virology, 81(9), 2147-2153. https://doi.org/10.1099/0022-1317-81-9-2147
  • Finkelshtein, D., Werman, A., Novick, D., Barak, S., & Rubinstein, M. (2013). LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proceedings of the National Academy of Sciences, 110, 7306-7311. https://doi.org/10.1073/pnas.1214441110
  • Fothergill, T., & McMillan, N. A. (2006). Papillomavirus virus-like particles activate the PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. Virology, 352, 319-328.
  • Gomez-Lucia. E., Barquero, N., & Domenech, A. (2018). Maedi-Visna virus: current perspectives. Veterinary Medicine: Research and Reports, 9, 11-21. 21. 10.2147/VMRR.S136705
  • Graham, K. L., Halasz, P., Tan, Y., Hewish, M. J., Takada, Y., Mackow, E. R., Robinson, M. K., & Coulson, B. S. (2003). Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αxβ2 and αvβ3 by using VP7 during cell entry. Journal of Virology, 77, 9969-9978. https://doi.org/10.1128/JVI.77.18.9969-9978.2003
  • Gravitt, P. E., & Winer, R. L. (2017). Natural history of HPV infection across the lifespan: role of viral latency. Viruses, 9(10), 1-10. https://doi.org/10.3390/v9100267
  • Jindrák, L., & Grubhoffer, L. (1999). Animal virus receptors. Folia Microbiologica, 44(5), 467-486. https://doi.org/10.1007/BF02816247
  • Katze, M. G., Korth, M. J., Law, G. L., & Nathanson, N. (2015). Viral pathogenesis: from basics to systems biology (pp. 29-30). Academic Press.
  • Kawabata, H. (2019). Transferrin and transferrin receptors update. Free Radical Biology and Medicine, 133, 46-54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037
  • Kjellén, L., & Lindahl, U. (1991). Proteoglycans: structuresand interactions. Annual Review of Biochemistry, 60, 443-475. https://doi.org/10.1146/annurev.bi.60.070191.002303
  • Kurth, M., Lolicato, F., Sandoval-Perez, A., Amaya-Espinosa, H., Teslenko, A., Sinning, I., Beck, R., Brügger, B., & Aponte-Santamaría, C. (2020). Cholesterol Localization around the Metabotropic Glutamate Receptor 2. The Journal of Physical Chemistry B, 124(41), 9061-9078. https://doi.org/10.1021/acs.jpcb.0c05264
  • Lafon, M. (2005). Rabies virus receptors. Journal of Neurovirology, 11, 82-87. https://doi.org/10.1080/13550280590900427
  • Luan, Y., & Xu, W. (2007). The Structure and Main Functions of Aminopeptidase N. Current Medicinal Chemistry, 14, 639-647. https://doi.org/10.2174/092986707780059571
  • Mandai, K., Rikitake, Y., Mori, M., & Takai, Y. (2015). Nectins and nectin-like molecules in development and disease. Current Topics in Developmental Biology, 112, 197-231. https://doi.org/10.1016/bs.ctdb.2014.11.019
  • Manoj, S., Jogger, C. R., Myscofski, D., Yoon, M., & Spear, P. G. (2004). Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proceedings of the National Academy of Sciences, 101, 12414-12421. https://doi.org/10.1073/pnas.0404211101
  • Maurer, K., Krey, T., Moennig, V., Thiel, H. J., & Rümenapf, T. (2004). CD46 is a cellular receptor for bovine viral diarrhea virus. Journal of Virology, 78(4), 1792-1799. https://doi.org/10.1128/JVI.78.4.1792-1799.2004
  • Minardi da Cruz, J. C., Singh, D. K., Lamara, A., & Chebloune, Y. (2013). Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses, 5(7), 1867-1884. https://doi.org/10.3390/v5071867
  • Moser, B., & Willimann, K. (2004). Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic Diseases, 63, 84-89. http://dx.doi.org/10.1136/ard.2004.028316
  • Navaratnarajah, C. K., Generous, A. R., Yousaf, I., & Cattaneo, R. (2020). Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Journal of Biological Chemistry, 295(9), 2771-2786. https://doi.org/10.1074/jbc.REV119.009961
  • Neufeldt, C. J., Cortese, M., Acosta, E. G., & Bartenschlager, R. (2018). Rewiring cellular networks by members of the Flaviviridae family. Nature Reviews Microbiology, 16(3), 125-142. https://doi.org/10.1038/nrmicro.2017.170
  • Ogita, H., & Takai, Y. (2006). Nectins and nectin-like molecules: Roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life, 58(5-6), 334-343. https://doi.org/10.1080/15216540600719622
  • Ozaki-Kuroda, K., Nakanishi, H., Ohta, H., Tanaka, H., Kurihara, H., Mueller, S., Irie, K., Ikeda, W., Sasaki, T., Wimmer, E., Nishimune, Y., & Takai, Y. (2002). Nectin couples cell–cell adhesion and the actin scaffold at heterotypic testicular junctions. Current Biology, 12, 1145-1150. https://doi.org/10.1016/S0960-9822(02)00922-3
  • Parker, J. S. L., Murphy, W. J., Wang, D., O'Brien, S. J., & Parrish, C. R. (2001). Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. Journal of Virology, 75, 3896-3902. https://doi.org/10.1128/JVI.75.8.3896-3902.2001
  • Pratakpiriya, W., Ping Teh A. P., Radtanakatikanon, A., Pirarat, N., Thi Lan, N., Takeda, M., Techangamsuwan, S., & Yamaguchi, R. (2017). Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Scientific Reports, 7, 349. https://doi.org/10.1038/s41598-017-00375-6
  • Reguera, J., Mudgal, G., Santiago, C., & Casasnovas, J. M. (2014). A structural view of coronavirus-receptor interactions. Virus Research, 194, 3-15. https://doi.org/10.1016/j.virusres.2014.10.005
  • Reymond, N., Fabre, S., Lecocq, E., Adelaïde, J., Dubreuil, P., & Lopez, M. (2001). Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. Journal of Biological Chemistry, 276(46), 43205-43215. https://doi.org/10.1074/jbc.M103810200
  • Rima, B., Balkema-Buschmann, A., Dundon, W. G., Duprex, P., Easton, A., Fouchier, R., Kurath, G., Lamb, R., Lee, B., Rota, P., Wang, L., & Consortium, I. R. (2019). ICTV virus taxonomy profile. Paramyxoviridae. Journal of General Virology, 100 (12), 1593-1594. 10.1099/jgv.0.001328
  • Roche, S., Albertini, A. A., Lepault, J., Bressanelli, S., & Gaudin, Y. (2008). Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cellular and Molecular Life Sciences, 65, 1716-1728. https://doi.org/10.1007/s00018-008-7534-3
  • Roodman, G. D. (2009). Osteoclasts pump iron. Cell Metabolism, 9(5), 405-406. https://doi.org/10.1016/j.cmet.2009.04.005
  • Ruiz-Sáenz, J., Goez, Y., Tabares, W., & López-Herrera, A. (2009). Cellular receptors for foot and mouth disease virus. Intervirology, 52(4), 201-212. https://doi.org/10.1159/000226121
  • Saltık, H. S., & Kale, M. (2017). Mavidil Virus Hastalığı. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 5(1), 32-44. https://doi.org/10.24998/maeusabed.284387
  • Saltık, H. S., & Kale, M. (2022). Rapid molecular detection and isolation of Canine Distemper Virus in naturally infected dogs. Ankara Üniversitesi Veteriner Fakültesi Dergisi. https://doi.org/10.33988/auvfd.846475
  • Saltik, H., & Kale, M. (2020): Evaluation of infection with N protein-specific Immunoglobulin M and G in naturally occurring distemper in dogs. Veterinární Medicína, 65: 168-173. https://doi.org/10.17221/31/2019-VETMED
  • Saltik, H. S., Kale, M., & Atli, K. (2022). First molecular evidence of border disease virus in wild boars in Turkey. Veterinary Research Communications, 46(1), 243-250. https://doi.org/10.1007/s11259-021-09852-w
  • Schnell, M. J., McGettigan, J. P., Wirblich, C., & Papaneri, A. (2010). The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology, 8(1), 51-61. https://doi.org/10.1038/nrmicro2260
  • Shuai, L., Wang, J., Zhao, D., Wen, Z., Ge, J., He, X., Wang, X., & Bu, Z. (2020). Integrin β1 promotes peripheral entry by Rabies virus. Journal of Virology, 94(2), e01819-19. https://doi.org/10.1128/JVI.01819-19
  • Smith, D. B., Meyers, G., Bukh, J., Gould, E. A., Monath, T., Muerhoff, A. S., Pletnev, A., Rico-Hesse, R., Stapleton, J. T., Simmonds, P., & Becher, P. (2017). Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. Journal of General Virology, 98, 2106-2112. 10.1099/jgv.0.000873
  • Sonowal, J., Patel, C. L., Gandham, R. K., Sajjanar, B., Khan, R. I. N., Praharaj, M. R., Malla, W. A., Kumar, D., Dev, K., Barkathullah, N., Bharali, K., Dubey, A., Lalita, D., Zafir, I., Mishra, B. P., & Mishra, B. (2021). Genome-wide expression analysis reveal host genes involved in immediate-early infections of different sheeppox virus strains. Gene, 801, 145850. https://doi.org/10.1016/j.gene.2021.145850
  • Spear, P. G., Eisenberg, R. J., & Cohen, G. H. (2000). Three classes of cell surface receptors for alphaherpesvirus entry. Virology, 275, 1-8. https://doi.org/10.1006/viro.2000.0529
  • Spear, P. G., & Longnecker, R. (2003). Herpesvirus entry: An update. Journal of Virology, 77, 10179-10185. https://doi.org/10.1128/JVI.77.19.10179-10185.2003
  • Stonos, N., Wootton, S. K., & Karrow, N. (2014). Immunogenetics of small ruminant lentiviral infections. Viruses, 6(8), 3311-3333. https://doi.org/10.3390/v6083311
  • Stuetzer, B., & Hartmann, K. (2014). Feline parvovirus infection and associated diseases. The Veterinary Journal, 201(2), 150-155. https://doi.org/10.1016/j.tvjl.2014.05.027
  • Su, A., Fu, Y., Meens, J., Yang, W., Meng, F., Herrler, G., & Becher, P. (2021). Infection of polarized bovine respiratory epithelial cells by bovine viral diarrhea virus (BVDV). Virulence, 12(1), 177-187. https://doi.org/10.1080/21505594.2020.1854539
  • Suchowski, M., Eschbaumer, M., Teifke, J. P., & Ulrich, R. (2021). After nasopharyngeal infection, foot-and-mouth disease virus serotype A RNA is shed in bovine milk without associated mastitis. Journal of Veterinary Diagnostic Investigation, 33(5), 997-1001. https://doi.org/10.1177/10406387211022467
  • Sytnyk, V., Leshchyns’ka, I., & Schachner, M. (2017). Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends in Neurosciences, 40(5), 295-308. https://doi.org/10.1016/j.tins.2017.03.003
  • Tatsuo, H., Ono, N., Tanaka, K., & Yanagi, Y. (2000). SLAM (CDw150) is a cellular receptor for measles virus. Nature, 406, 893-897. https://doi.org/10.1038/35022579
  • Tiwari, V., Clement, C., Xu, D., Valyi-Nagy, T., Yue, B. Y., Liu, J., & Shukla, D. (2006). Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. Journal of Virology, 80, 8970-8980. https://doi.org/10.1128/JVI.00296-06
  • Tuthill, T. J., Rowlands, D. J., & Killington, R. A. (2007). Picornavirus entry. Future Virology, 2(4), 343-351. https://doi.org/10.2217/17460794.2.4.343
  • Veillette, A., & Latour, S. (2003). The SLAM family of immune-cell receptors. Current Opinion in Immunology, 15, 277-285. https://doi.org/10.1016/S0952-7915(03)00041-4
  • Villa, T. G., Feijoo-Siota, L., Rama, J. L. R., & Ageitos, J. M. (2017). Antivirals against animal viruses. Biochemical Pharmacology, 133, 97-116. https://doi.org/10.1016/j.bcp.2016.09.029
  • Wang, J., Wang, Z., Liu, R., Shuai, L., Wang, X., Luo, J., Wang, C., Chen, W., Wang, X., Ge, J., He, X., Wen, Z., & Bu, Z. (2018). Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathogens, 14(7), e1007189. https://doi.org/10.1371/journal.ppat.1007189
  • Wasik, B. R., Barnard, K. N., & Parrish, C. R. (2016). Effects of sialic acid modifications on virus binding and infection. Trends in Microbiology, 24(12), 991-1001. https://doi.org/10.1016/j.tim.2016.07.005
  • Wu, W., & Roy, P. (2021). Sialic acid binding sites in VP2 of bluetongue virus and their use during virus entry. Journal of Virology, JVI-01677. https://doi.org/10.1128/JVI.01677-21
  • Zell, R. (2018). Picornaviridae-the ever-growing virus family. Archives of Virology, 163(2), 299-317. https://doi.org/10.1007/s00705-017-3614-8
  • Zeltina, A., Bowden, T. A., & Lee, B. (2016). Emerging paramyxoviruses: receptor tropism and zoonotic potential. PLoS Pathogens, 12(2), e1005390. https://doi.org/10.1371/journal.ppat.1005390
  • Zhang, N., Kisiswa, L., Ramanujan, A., Li, Z., Sim, E. W., Tian, X., Yuan, W., Ibáñez, C. F., & Lin, Z. (2021). Structural basis of NF-κB signaling by the p75 neurotrophin receptor interaction with adaptor protein TRADD through their respective death domains. Journal of Biological Chemistry, 297(2), 1-11. https://doi.org/10.1016/j.jbc.2021.100916

Certain receptors used by viruses to infect susceptible host cells

Yıl 2022, Cilt: 1 Sayı: 1, 13 - 22, 26.12.2022

Öz

Virus-host interactions are crucial in viral pathogenesis and tissue tropism. The interaction between a virus and its host cell begins with the binding of the virus particle to specific receptors on the cell surface. Viral binding proteins that mediate the binding mechanism play an important role. The viral attachment protein can be seen as the "key" that unlocks host cells by interacting with the receptor on the cell surface. These key-lock model interactions are critical to the successful entry of viruses into host cells. Surface glycoproteins, binding pockets that bind to cellular receptors such as canyons, and viral capsid proteins containing extended loops are important parts of the viral attachment mechanism. During this attachment mechanism, multiple interactions occur between the virus and the cell. Viruses use a variety of strategies to bind to one or more receptors, cross the plasma membrane barrier, and enter the host cell. The viral attachment protein can be seen as the "key" that unlocks host cells by interacting with the receptor on the cell surface. These key-lock model interactions are critical to the successful entry of viruses into host cells. It has been determined by studies that viruses target certain classes of molecules while using receptors in infections. Integrins, nectins, and members of the immunoglobulin superfamily are some of the receptors commonly used by viruses. Furthermore, many receptors are awaiting discovery in order to clarify the virus-host interaction mechanisms. The identification of these viral receptors on host cells is one of the most active fields of virology. In this review, it is aimed to reveal which receptors on host cells are used by some virus families, especially those that are prominent in veterinary medicine, in the light of current studies.

Kaynakça

  • Adedeji, A. O., Barr, B., Gomez-Lucia, E., & Murphy, B. (2013). A polytropic caprine arthritis encephalitis virus promoter isolated from multiple tissues from a sheep with multisystemic lentivirus-associated inflammatory disease. Viruses, 5(8), 2005-2018. https://doi.org/10.3390/v5082005
  • Albertini, A. A., Baquero, E., Ferlin, A., & Gaudin, Y. (2012). Molecular and cellular aspects of rhabdovirus entry. Viruses, 4(1), 117-139. https://doi.org/10.3390/v4010117
  • Aranda‐Rivera, AK., Cruz‐Gregorio, A., Briones‐Herrera, A., & Pedraza‐Chaverri, J. (2021). Regulation of autophagy by high- and low-risk human papillomaviruses. Reviews in Medical Virology, 31(2), e2169. https://doi.org/10.1002/rmv.2169
  • Arias, C.F., & López, S. (2021). Rotavirus cell entry: not so simple after all. Current Opinion in Virology, 48, 42-48. https://doi.org/10.1016/j.coviro.2021.03.011
  • Arias, C. F., Silva-Ayala, D., & Lopez, S. (2015). Rotavirus entry: a deep journey into the cell with several exits. Journal of Virology, 89, 890-893. https://doi.org/10.1128/JVI.01787-14
  • Bai, L., Sato, H., Kubo, Y., Wada, S., & Aida, Y. (2019). CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. The FASEB Journal, 33(12), 14516-14527. https://doi.org/10.1096/fj.201901528R
  • Blacklaws, B. A. (2012). Small ruminant lentiviruses: immunopathogenesis of Visna-Maedi and caprine arthritis and encephalitis virus. Comparative Immunology, Microbiology and Infectious Diseases, 35(3), 259-269. https://doi.org/10.1016/j.cimid.2011.12.003
  • Borzacchiello, G., Russo, V., Gentile, F., Roperto, F., Venuti, A., Nitsch, L., Campo, M. S., & Roperto, S. (2006). Bovine papillomavirus E5 oncoprotein binds to the activated form of the platelet-derived growth factor beta receptor in naturally occurring bovine urinary bladder tumours. Oncogene, 25, 1251-1260. https://doi.org/10.1038/sj.onc.1209152
  • Böhm, R., Fleming, F. E., Maggioni, A., Dang, V. T., Holloway, G., Coulson, B. S., von Itzstein, M., & Haselhorst, T. (2015). Revisiting the role of histo-blood group antigens in rotavirus host-cell invasion. Nature Communications, 6(1), 1-12. https://doi.org/10.1038/ncomms6907
  • Cheng, Y. R., Li, X., Zhao, X., & Lin, H. (2021). Cell Entry of Animal Coronaviruses. Viruses, 13(10), 1977. https://doi.org/10.3390/v13101977
  • Coffin, J., Blomberg, J., Fan, H., Gifford, R., Hatziioannou, T., Lindemann, D., Mayer, J., Stoye, J., Tristem, M., & Johnson, W. (2021). ICTV Virus Taxonomy Profile: Retroviridae 2021. Journal of General Virology, 102(12). 10.1099/jgv.0.001712
  • Coil, D. A., & Miller, A. D. (2004). Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. Journal of Virology, 78, 10920-10926. https://doi.org/10.1128/JVI.78.20.10920-10926.2004
  • Cotmore, S. F., Agbandje-McKenna, M., Chiorini, J. A., Mukha, D. V., Pintel, D. J., Qiu, J., Soderlund-Venermo, M., Tattersall, P., Tijssen, P., Gatherer, D., & Davison, A. J. (2014). The family Parvoviridae. Archives of Virology, 159, 1239-1247. https://doi.org/10.1007/s00705-013-1914-1
  • Coulson, B. S. (2015). Expanding diversity of glycan receptor usage by rotaviruses. Current Opinion in Virology, 15, 90-96. https://doi.org/10.1016/j.coviro.2015.08.012
  • Couñago, R. M., Knapp, K. M., Nakatani, Y., Fleming, S. B., Corbett, M., Wise, L. M., Mercer, A. A., & Krause, K. L. (2015). Structures of Orf virus chemokine binding protein in complex with host chemokines reveal clues to broad binding specificity. Structure, 23(7), 1199-1213. https://doi.org/10.1016/j.str.2015.04.023
  • Crespo, H., Reina, R., Glaria, I., Ramírez, H., de Andrés, X., Jáuregui, P., Luján, L., Martínez-Pomares, L., Amorena, B., & de Andrés, D. F. (2011). Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection. Veterinary Research, 42(1), 1-10. https://doi.org/10.1186/1297-9716-42-28
  • De Salort, J., Sintes, J., Llinàs, L., Matesanz-Isabel, J., & Engel, P. (2011). Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells. Immunology Letters, 134, 129-136. https://doi.org/10.1016/j.imlet.2010.09.021
  • Di Teodoro, G., Bortolami, A., Teodori, L., Leone, A., D’Alterio, N., Malatesta, D., Rosamilia, A., Colaianni, M. L., Petrini, A., Terregino, C., Savini, G., Bonfante, F., & Lorusso, A. (2019). Replication kinetics and cellular tropism of emerging reoviruses in sheep and swine respiratory ex vivo organ cultures. Veterinary microbiology, 234, 119-127. https://doi.org/10.1016/j.vetmic.2019.06.001
  • Eisenberg, R. J., Atanasiu, D., Cairns, T. M., Gallagher, J. R., Krummenacher, C., & Cohen, G. H. (2012). Herpes virus fusion and entry: A story with many characters. Viruses, 4, 800-832. https://doi.org/10.3390/v4050800
  • Etessami, R., Conzelmann, K. K., Fadai-Ghotbi, B., Natelson, B., Tsiang, H., & Ceccaldi, P. E. (2000). Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. Journal of General Virology, 81(9), 2147-2153. https://doi.org/10.1099/0022-1317-81-9-2147
  • Finkelshtein, D., Werman, A., Novick, D., Barak, S., & Rubinstein, M. (2013). LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proceedings of the National Academy of Sciences, 110, 7306-7311. https://doi.org/10.1073/pnas.1214441110
  • Fothergill, T., & McMillan, N. A. (2006). Papillomavirus virus-like particles activate the PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. Virology, 352, 319-328.
  • Gomez-Lucia. E., Barquero, N., & Domenech, A. (2018). Maedi-Visna virus: current perspectives. Veterinary Medicine: Research and Reports, 9, 11-21. 21. 10.2147/VMRR.S136705
  • Graham, K. L., Halasz, P., Tan, Y., Hewish, M. J., Takada, Y., Mackow, E. R., Robinson, M. K., & Coulson, B. S. (2003). Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αxβ2 and αvβ3 by using VP7 during cell entry. Journal of Virology, 77, 9969-9978. https://doi.org/10.1128/JVI.77.18.9969-9978.2003
  • Gravitt, P. E., & Winer, R. L. (2017). Natural history of HPV infection across the lifespan: role of viral latency. Viruses, 9(10), 1-10. https://doi.org/10.3390/v9100267
  • Jindrák, L., & Grubhoffer, L. (1999). Animal virus receptors. Folia Microbiologica, 44(5), 467-486. https://doi.org/10.1007/BF02816247
  • Katze, M. G., Korth, M. J., Law, G. L., & Nathanson, N. (2015). Viral pathogenesis: from basics to systems biology (pp. 29-30). Academic Press.
  • Kawabata, H. (2019). Transferrin and transferrin receptors update. Free Radical Biology and Medicine, 133, 46-54. https://doi.org/10.1016/j.freeradbiomed.2018.06.037
  • Kjellén, L., & Lindahl, U. (1991). Proteoglycans: structuresand interactions. Annual Review of Biochemistry, 60, 443-475. https://doi.org/10.1146/annurev.bi.60.070191.002303
  • Kurth, M., Lolicato, F., Sandoval-Perez, A., Amaya-Espinosa, H., Teslenko, A., Sinning, I., Beck, R., Brügger, B., & Aponte-Santamaría, C. (2020). Cholesterol Localization around the Metabotropic Glutamate Receptor 2. The Journal of Physical Chemistry B, 124(41), 9061-9078. https://doi.org/10.1021/acs.jpcb.0c05264
  • Lafon, M. (2005). Rabies virus receptors. Journal of Neurovirology, 11, 82-87. https://doi.org/10.1080/13550280590900427
  • Luan, Y., & Xu, W. (2007). The Structure and Main Functions of Aminopeptidase N. Current Medicinal Chemistry, 14, 639-647. https://doi.org/10.2174/092986707780059571
  • Mandai, K., Rikitake, Y., Mori, M., & Takai, Y. (2015). Nectins and nectin-like molecules in development and disease. Current Topics in Developmental Biology, 112, 197-231. https://doi.org/10.1016/bs.ctdb.2014.11.019
  • Manoj, S., Jogger, C. R., Myscofski, D., Yoon, M., & Spear, P. G. (2004). Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proceedings of the National Academy of Sciences, 101, 12414-12421. https://doi.org/10.1073/pnas.0404211101
  • Maurer, K., Krey, T., Moennig, V., Thiel, H. J., & Rümenapf, T. (2004). CD46 is a cellular receptor for bovine viral diarrhea virus. Journal of Virology, 78(4), 1792-1799. https://doi.org/10.1128/JVI.78.4.1792-1799.2004
  • Minardi da Cruz, J. C., Singh, D. K., Lamara, A., & Chebloune, Y. (2013). Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses, 5(7), 1867-1884. https://doi.org/10.3390/v5071867
  • Moser, B., & Willimann, K. (2004). Chemokines: role in inflammation and immune surveillance. Annals of the Rheumatic Diseases, 63, 84-89. http://dx.doi.org/10.1136/ard.2004.028316
  • Navaratnarajah, C. K., Generous, A. R., Yousaf, I., & Cattaneo, R. (2020). Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Journal of Biological Chemistry, 295(9), 2771-2786. https://doi.org/10.1074/jbc.REV119.009961
  • Neufeldt, C. J., Cortese, M., Acosta, E. G., & Bartenschlager, R. (2018). Rewiring cellular networks by members of the Flaviviridae family. Nature Reviews Microbiology, 16(3), 125-142. https://doi.org/10.1038/nrmicro.2017.170
  • Ogita, H., & Takai, Y. (2006). Nectins and nectin-like molecules: Roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life, 58(5-6), 334-343. https://doi.org/10.1080/15216540600719622
  • Ozaki-Kuroda, K., Nakanishi, H., Ohta, H., Tanaka, H., Kurihara, H., Mueller, S., Irie, K., Ikeda, W., Sasaki, T., Wimmer, E., Nishimune, Y., & Takai, Y. (2002). Nectin couples cell–cell adhesion and the actin scaffold at heterotypic testicular junctions. Current Biology, 12, 1145-1150. https://doi.org/10.1016/S0960-9822(02)00922-3
  • Parker, J. S. L., Murphy, W. J., Wang, D., O'Brien, S. J., & Parrish, C. R. (2001). Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. Journal of Virology, 75, 3896-3902. https://doi.org/10.1128/JVI.75.8.3896-3902.2001
  • Pratakpiriya, W., Ping Teh A. P., Radtanakatikanon, A., Pirarat, N., Thi Lan, N., Takeda, M., Techangamsuwan, S., & Yamaguchi, R. (2017). Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Scientific Reports, 7, 349. https://doi.org/10.1038/s41598-017-00375-6
  • Reguera, J., Mudgal, G., Santiago, C., & Casasnovas, J. M. (2014). A structural view of coronavirus-receptor interactions. Virus Research, 194, 3-15. https://doi.org/10.1016/j.virusres.2014.10.005
  • Reymond, N., Fabre, S., Lecocq, E., Adelaïde, J., Dubreuil, P., & Lopez, M. (2001). Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. Journal of Biological Chemistry, 276(46), 43205-43215. https://doi.org/10.1074/jbc.M103810200
  • Rima, B., Balkema-Buschmann, A., Dundon, W. G., Duprex, P., Easton, A., Fouchier, R., Kurath, G., Lamb, R., Lee, B., Rota, P., Wang, L., & Consortium, I. R. (2019). ICTV virus taxonomy profile. Paramyxoviridae. Journal of General Virology, 100 (12), 1593-1594. 10.1099/jgv.0.001328
  • Roche, S., Albertini, A. A., Lepault, J., Bressanelli, S., & Gaudin, Y. (2008). Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cellular and Molecular Life Sciences, 65, 1716-1728. https://doi.org/10.1007/s00018-008-7534-3
  • Roodman, G. D. (2009). Osteoclasts pump iron. Cell Metabolism, 9(5), 405-406. https://doi.org/10.1016/j.cmet.2009.04.005
  • Ruiz-Sáenz, J., Goez, Y., Tabares, W., & López-Herrera, A. (2009). Cellular receptors for foot and mouth disease virus. Intervirology, 52(4), 201-212. https://doi.org/10.1159/000226121
  • Saltık, H. S., & Kale, M. (2017). Mavidil Virus Hastalığı. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 5(1), 32-44. https://doi.org/10.24998/maeusabed.284387
  • Saltık, H. S., & Kale, M. (2022). Rapid molecular detection and isolation of Canine Distemper Virus in naturally infected dogs. Ankara Üniversitesi Veteriner Fakültesi Dergisi. https://doi.org/10.33988/auvfd.846475
  • Saltik, H., & Kale, M. (2020): Evaluation of infection with N protein-specific Immunoglobulin M and G in naturally occurring distemper in dogs. Veterinární Medicína, 65: 168-173. https://doi.org/10.17221/31/2019-VETMED
  • Saltik, H. S., Kale, M., & Atli, K. (2022). First molecular evidence of border disease virus in wild boars in Turkey. Veterinary Research Communications, 46(1), 243-250. https://doi.org/10.1007/s11259-021-09852-w
  • Schnell, M. J., McGettigan, J. P., Wirblich, C., & Papaneri, A. (2010). The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology, 8(1), 51-61. https://doi.org/10.1038/nrmicro2260
  • Shuai, L., Wang, J., Zhao, D., Wen, Z., Ge, J., He, X., Wang, X., & Bu, Z. (2020). Integrin β1 promotes peripheral entry by Rabies virus. Journal of Virology, 94(2), e01819-19. https://doi.org/10.1128/JVI.01819-19
  • Smith, D. B., Meyers, G., Bukh, J., Gould, E. A., Monath, T., Muerhoff, A. S., Pletnev, A., Rico-Hesse, R., Stapleton, J. T., Simmonds, P., & Becher, P. (2017). Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. Journal of General Virology, 98, 2106-2112. 10.1099/jgv.0.000873
  • Sonowal, J., Patel, C. L., Gandham, R. K., Sajjanar, B., Khan, R. I. N., Praharaj, M. R., Malla, W. A., Kumar, D., Dev, K., Barkathullah, N., Bharali, K., Dubey, A., Lalita, D., Zafir, I., Mishra, B. P., & Mishra, B. (2021). Genome-wide expression analysis reveal host genes involved in immediate-early infections of different sheeppox virus strains. Gene, 801, 145850. https://doi.org/10.1016/j.gene.2021.145850
  • Spear, P. G., Eisenberg, R. J., & Cohen, G. H. (2000). Three classes of cell surface receptors for alphaherpesvirus entry. Virology, 275, 1-8. https://doi.org/10.1006/viro.2000.0529
  • Spear, P. G., & Longnecker, R. (2003). Herpesvirus entry: An update. Journal of Virology, 77, 10179-10185. https://doi.org/10.1128/JVI.77.19.10179-10185.2003
  • Stonos, N., Wootton, S. K., & Karrow, N. (2014). Immunogenetics of small ruminant lentiviral infections. Viruses, 6(8), 3311-3333. https://doi.org/10.3390/v6083311
  • Stuetzer, B., & Hartmann, K. (2014). Feline parvovirus infection and associated diseases. The Veterinary Journal, 201(2), 150-155. https://doi.org/10.1016/j.tvjl.2014.05.027
  • Su, A., Fu, Y., Meens, J., Yang, W., Meng, F., Herrler, G., & Becher, P. (2021). Infection of polarized bovine respiratory epithelial cells by bovine viral diarrhea virus (BVDV). Virulence, 12(1), 177-187. https://doi.org/10.1080/21505594.2020.1854539
  • Suchowski, M., Eschbaumer, M., Teifke, J. P., & Ulrich, R. (2021). After nasopharyngeal infection, foot-and-mouth disease virus serotype A RNA is shed in bovine milk without associated mastitis. Journal of Veterinary Diagnostic Investigation, 33(5), 997-1001. https://doi.org/10.1177/10406387211022467
  • Sytnyk, V., Leshchyns’ka, I., & Schachner, M. (2017). Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends in Neurosciences, 40(5), 295-308. https://doi.org/10.1016/j.tins.2017.03.003
  • Tatsuo, H., Ono, N., Tanaka, K., & Yanagi, Y. (2000). SLAM (CDw150) is a cellular receptor for measles virus. Nature, 406, 893-897. https://doi.org/10.1038/35022579
  • Tiwari, V., Clement, C., Xu, D., Valyi-Nagy, T., Yue, B. Y., Liu, J., & Shukla, D. (2006). Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. Journal of Virology, 80, 8970-8980. https://doi.org/10.1128/JVI.00296-06
  • Tuthill, T. J., Rowlands, D. J., & Killington, R. A. (2007). Picornavirus entry. Future Virology, 2(4), 343-351. https://doi.org/10.2217/17460794.2.4.343
  • Veillette, A., & Latour, S. (2003). The SLAM family of immune-cell receptors. Current Opinion in Immunology, 15, 277-285. https://doi.org/10.1016/S0952-7915(03)00041-4
  • Villa, T. G., Feijoo-Siota, L., Rama, J. L. R., & Ageitos, J. M. (2017). Antivirals against animal viruses. Biochemical Pharmacology, 133, 97-116. https://doi.org/10.1016/j.bcp.2016.09.029
  • Wang, J., Wang, Z., Liu, R., Shuai, L., Wang, X., Luo, J., Wang, C., Chen, W., Wang, X., Ge, J., He, X., Wen, Z., & Bu, Z. (2018). Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathogens, 14(7), e1007189. https://doi.org/10.1371/journal.ppat.1007189
  • Wasik, B. R., Barnard, K. N., & Parrish, C. R. (2016). Effects of sialic acid modifications on virus binding and infection. Trends in Microbiology, 24(12), 991-1001. https://doi.org/10.1016/j.tim.2016.07.005
  • Wu, W., & Roy, P. (2021). Sialic acid binding sites in VP2 of bluetongue virus and their use during virus entry. Journal of Virology, JVI-01677. https://doi.org/10.1128/JVI.01677-21
  • Zell, R. (2018). Picornaviridae-the ever-growing virus family. Archives of Virology, 163(2), 299-317. https://doi.org/10.1007/s00705-017-3614-8
  • Zeltina, A., Bowden, T. A., & Lee, B. (2016). Emerging paramyxoviruses: receptor tropism and zoonotic potential. PLoS Pathogens, 12(2), e1005390. https://doi.org/10.1371/journal.ppat.1005390
  • Zhang, N., Kisiswa, L., Ramanujan, A., Li, Z., Sim, E. W., Tian, X., Yuan, W., Ibáñez, C. F., & Lin, Z. (2021). Structural basis of NF-κB signaling by the p75 neurotrophin receptor interaction with adaptor protein TRADD through their respective death domains. Journal of Biological Chemistry, 297(2), 1-11. https://doi.org/10.1016/j.jbc.2021.100916
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Derlemeler
Yazarlar

Oğuzhan Kaplan 0000-0003-3214-567X

Yayımlanma Tarihi 26 Aralık 2022
Gönderilme Tarihi 5 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 1 Sayı: 1

Kaynak Göster

APA Kaplan, O. (2022). Virusların Duyarlı Konak Hücreleri Enfekte Etmek İçin Kullandıkları Bazı Reseptörler. Antakya Veteriner Bilimleri Dergisi, 1(1), 13-22.