Research Article
BibTex RIS Cite

Jeotermal Enerji Destekli Güç ve Temiz Su Üretim Sisteminin İncelenmesi ve Termodinamik Analizi

Year 2018, Volume: 6 Issue: 2, 86 - 93, 03.08.2018
https://doi.org/10.21541/apjes.363409

Abstract

Bu çalışmada, jeotermal enerji destekli güç ve deniz suyundan temiz su üretim çevrimi önerilmiş ve termodinamik analizi incelenmiştir. Çevrimin genel enerji ve ekserji verimleri araştırılmıştır. Bu bağlamda, çevrimdeki her bir elemana kütle, enerji, entropi ve ekserji denge bağıntı yöntemleri uygulanmıştır. Sistem organik Rankine çevrimi (ORC) ve tek kademeli distilasyon ünitesinden meydana gelmektedir. Aracı akışkan olarak ORC çevriminde çevre dostu CO2 akışkanı tercih edilmiştir. Deniz suyundan temiz su üretimi için tek kademeli distilasyon ünitesi kullanılmıştır. Jeotermal enerji kullanılarak, çevrimden elde edilecek olan güç üretiminin aynı seviyede tutulması amaçlanmıştır. Yapılan bu çalışmada çevrimin genel enerji ve ekserji verimleri sırasıyla %10.18 ve %56.83 olarak hesaplanmıştır.

References

  • [1] Ezzat, M.F., Dincer, I., Energy and exergy analyses of a new geothermal–solar energy based system Solar Energy 134, 95–106 (2016) [2] Hettiarachchi HDM, Golubovic M, Worek WM, et al. Optimum design criteria for an Organic Rankine Cycle using low- and mediumtemperature geothermal heat sources. Energy 2007; 32:1698–706.
  • [3] Tamamoto T, Furuhata T, Arai N, Mori K. Design and testing of the organic Rankine cycle. Energy 2001; 26:239–51.
  • [4] Yilmaz, F. Güneş enerjisi destekli organik Rankine çevriminin Isparta şartlarında incelenmesi, S.D.Ü Üniversitesi Fen Bilimleri Ens. Yüksek Lisans Tezi, 2013
  • [5] Ezzat, M.F., Dincer, I., Energy and exergy analyses of a new geothermal–solar energy based system, Solar Energy, 134 (2016) 95–106
  • [6] Esfahani, I.J., Yoo, C.K., 2013. Exergy analysis and parametric optimization of three power and fresh water cogeneration systems using refrigeration chillers. Energy 59, 340–355.
  • [7] El Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 59 (1–2), 435–444.
  • [8] Yildirim, N., Genc, S., Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy, Energy 90 (2015) 987-996
  • [9] Ratlamwala TAH, Dincer I, Gadalla MA. Performance analysis of a novel integrated geothermal-based system for multigeneration applications. Appl Therm Eng 2012;40:71-9.
  • [10] Akrami E, Chitsaz A, Nami H, Mahmoudi SMS. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy 2017;124:625-39.
  • [11] Coskun C, Oktay Z, Dincer I. Modified exergoeconomic modeling of geothermal power plants. Energy 2011;36:6358-66.
  • [12] Yuksel YE, Ozturk M. Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production. Int J Hydrogen Energy 2017;42(4):2530-46.
  • [13] Şahin A., Jeotermal Enerji Yatırımları Açısından Değerlendirme, Jeotermal Enerji ve Türkiye, Mayıs 2013, 1-40
  • [14] Demir, M.E., Dincer, İ., Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production, Desalination 404 (2017) 59–71
  • [15] H.T. El-Dessouky, H.M. Ettouney, Fundamentals of SaltWater Desalination, Elsevier, 2002, http://dx.doi.org/10.1016/B978-044450810-2/50008-7.
  • [16] Dincer, I., Rosen, M. A. 2012 “Exergy: energy, environment and sustainable development”, Second Ed., Newness,
  • [17] Moran, M., 1982 “Availability Analysis: A Guide to Efficient Energy Usage”, Englewood Cliffs, NJ: Prentice-Hall,
  • [18] Bejan, A., Tsatsaronis, G., Moran, M. 1996. “Thermal Design and Optimization”, New York: Wiley Inter-science.
  • [19] Klein SA. Engineering equation solver. Academic professional, version 9. www.fchart.com/ees/ees.shtml: 2015.

Jeotermal Enerji Destekli Güç ve Temiz Su Üretim Sisteminin İncelenmesi ve Termodinamik Analizi

Year 2018, Volume: 6 Issue: 2, 86 - 93, 03.08.2018
https://doi.org/10.21541/apjes.363409

Abstract

References

  • [1] Ezzat, M.F., Dincer, I., Energy and exergy analyses of a new geothermal–solar energy based system Solar Energy 134, 95–106 (2016) [2] Hettiarachchi HDM, Golubovic M, Worek WM, et al. Optimum design criteria for an Organic Rankine Cycle using low- and mediumtemperature geothermal heat sources. Energy 2007; 32:1698–706.
  • [3] Tamamoto T, Furuhata T, Arai N, Mori K. Design and testing of the organic Rankine cycle. Energy 2001; 26:239–51.
  • [4] Yilmaz, F. Güneş enerjisi destekli organik Rankine çevriminin Isparta şartlarında incelenmesi, S.D.Ü Üniversitesi Fen Bilimleri Ens. Yüksek Lisans Tezi, 2013
  • [5] Ezzat, M.F., Dincer, I., Energy and exergy analyses of a new geothermal–solar energy based system, Solar Energy, 134 (2016) 95–106
  • [6] Esfahani, I.J., Yoo, C.K., 2013. Exergy analysis and parametric optimization of three power and fresh water cogeneration systems using refrigeration chillers. Energy 59, 340–355.
  • [7] El Emam, R.S., Dincer, I., 2013. Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle. Appl. Therm. Eng. 59 (1–2), 435–444.
  • [8] Yildirim, N., Genc, S., Thermodynamic analysis of a milk pasteurization process assisted by geothermal energy, Energy 90 (2015) 987-996
  • [9] Ratlamwala TAH, Dincer I, Gadalla MA. Performance analysis of a novel integrated geothermal-based system for multigeneration applications. Appl Therm Eng 2012;40:71-9.
  • [10] Akrami E, Chitsaz A, Nami H, Mahmoudi SMS. Energetic and exergoeconomic assessment of a multi-generation energy system based on indirect use of geothermal energy. Energy 2017;124:625-39.
  • [11] Coskun C, Oktay Z, Dincer I. Modified exergoeconomic modeling of geothermal power plants. Energy 2011;36:6358-66.
  • [12] Yuksel YE, Ozturk M. Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production. Int J Hydrogen Energy 2017;42(4):2530-46.
  • [13] Şahin A., Jeotermal Enerji Yatırımları Açısından Değerlendirme, Jeotermal Enerji ve Türkiye, Mayıs 2013, 1-40
  • [14] Demir, M.E., Dincer, İ., Development of an integrated hybrid solar thermal power system with thermoelectric generator for desalination and power production, Desalination 404 (2017) 59–71
  • [15] H.T. El-Dessouky, H.M. Ettouney, Fundamentals of SaltWater Desalination, Elsevier, 2002, http://dx.doi.org/10.1016/B978-044450810-2/50008-7.
  • [16] Dincer, I., Rosen, M. A. 2012 “Exergy: energy, environment and sustainable development”, Second Ed., Newness,
  • [17] Moran, M., 1982 “Availability Analysis: A Guide to Efficient Energy Usage”, Englewood Cliffs, NJ: Prentice-Hall,
  • [18] Bejan, A., Tsatsaronis, G., Moran, M. 1996. “Thermal Design and Optimization”, New York: Wiley Inter-science.
  • [19] Klein SA. Engineering equation solver. Academic professional, version 9. www.fchart.com/ees/ees.shtml: 2015.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fatih Yılmaz

Publication Date August 3, 2018
Submission Date December 7, 2017
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

IEEE F. Yılmaz, “Jeotermal Enerji Destekli Güç ve Temiz Su Üretim Sisteminin İncelenmesi ve Termodinamik Analizi”, APJES, vol. 6, no. 2, pp. 86–93, 2018, doi: 10.21541/apjes.363409.