Research Article
BibTex RIS Cite

Engelli Karıştırmalı Tanklarda Karıştırıcı Hızı Değişiminin Pickering Emülsiyonlarının Damlacık Boyut Dağılımı Üzerine Etkisi

Year 2020, Volume: 8 Issue: 1, 181 - 192, 28.01.2020
https://doi.org/10.21541/apjes.542644

Abstract



Pickering emülsiyonları, katı
parçacıklar ile stabilize edilmiş emülsiyonlardır. Sürfaktan bazlı
emülsiyonlara potansiyel bir alternatiftirler. Pickering emülsiyonunun
kararlığı, dağılmış faz damlacıklarının büyüklüğü ile ilişkilidir. Küçük
damlacıklar daha kararlıdır. Pickering emülsiyonlarının kararlığı,
emülsiyonları üretmek için kullanılan partiküllerin özelliklerine ve üretim
işleminde sağlanan karıştırmaya bağlıdır. Bu araştırma, karıştırıcı hızının
değişiminin, karıştırılmalı tankta üretilen Pickering emülsiyonlarının damlacık
boyutuna etkisini incelemektedir. Silikon yağı saf su içinde dağıtılmış ve su
içinde yağ türü emülsiyonlar oluşturmak için hidrofilik cam parçacıklarla
stabilize edilmiştir. İki farklı boyutta farklı makaslama kapasitesine sahip
iki farklı karıştırıcı kullanılmıştır: Rushton türbini ve eğimli bıçaklı
türbin. Elde edilen damlacık boyut dağılımı Malvern Mastersizer 3000® ile
belirlenmiştir. Yeterli akış sağlayabilen karıştırıcılar için, karıştırıcı
hızının arttırılmasının emülsiyonun damlacık boyutunu azalttığı görülmüştür.
Hızı azaltmanın, mevcut stabilize bir emülsiyonun damlacık boyutunu arttırdığı
görülmüştür. Emülsiyon oluşumunda bir hız histerezisi gözlenmiştir. Karıştırma
süresi analizi, damlacıkların tankın bazı bölgelerinde kalma süresinin, artan
hızla damlacık büyüklüğünün azalmasının nedeni olduğunu doğrulamıştır.



References

  • [1] Chen, G., & Tao, D. (2005). An experimental study of stability of oil–water emulsion. Fuel Processing Technology, 86(5), 499-508. doi:10.1016/j.fuproc.2004.03.010
  • [2] Pickering, S.U., 1907. Emulsions. J. Chem. Soc. 91, 2001.
  • [3] Binks, B. P. (2002). Particles as surfactants - Similarities and differences. Current Opinion in Colloid and Interface Science, 7(1–2), 21–41. http://doi.org/10.1016/S1359-0294(02)00008-0
  • [4] Binks, B. P., & Lumsdon, S. O. (2000). Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir, 16(23), 8622–8631. http://doi.org/10.1021/la000189s
  • [5] Binks, B. P., & Lumsdon, S. O. (2001). Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir, 17(15), 4540–4547. http://doi.org/10.1021/la0103822
  • [6] Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 100–102(SUPPL.), 503–546. http://doi.org/10.1016/S0001-8686(02)00069-6
  • [7] Tsabet, È., & Fradette, L. (2015). Effect of the properties of oil, particles, and water on the production of Pickering emulsions. Chemical Engineering Research and Design, 97(1), 9–17. http://doi.org/10.1016/j.cherd.2015.02.016
  • [8] Arditty, S., Whitby, C. P., Binks, B. P., Schmitt, V., & Leal-Calderon, F. (2003). Some general features of limited coalescence in solid-stabilized emulsions. European Physical Journal E, 11(3), 273–281. http://doi.org/10.1140/epje/i2003-10018-6
  • [9] Madivala, B., Vandebril, S., Fransaer, J., & Vermant, J. (2009). Exploiting particle shape in solid stabilized emulsions. Soft Matter, 5(8), 1717. doi:10.1039/b816680c
  • [10] Kaptay, G. (2006). On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams, 283, 387–401. http://doi.org/10.1016/j.colsurfa.2005.12.021
  • [11] Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333–349. http://doi.org/10.1016/0009-2509(93)80021-H
  • [12] Leng, D. E., & Calabrese, R. V. (2004). Immiscible Liquid – Liquid Systems. Handbook of Industrial Mixing: Science and Practice
  • [13] Zhou, G., & Kresta, S. M. (1998). Evolution of drop size distribution in liquid-liquid dispersions for various impellers. Chemical Engineering Science, 53(11), 2099–2113. http://doi.org/10.1016/S0009-2509(97)00437-5
  • [14] Siddiqui, S. W., & Norton, I. T. (2012). Oil-in-water emulsification using confined impinging jets. Journal of Colloid and Interface Science, 377(1), 213–221. http://doi.org/10.1016/j.jcis.2012.03.062
  • [15] Hemrajani, R., & Tatterson, G. (2004). Mechanically Stirred Vessels. Handbook of Industrial Mixing: Science and Practice. http://doi.org/10.1002/0471451452.ch6
  • [16] Wichterle, K. (1995). Drop breakup by impellers. Chemical Engineering Science, 50(22), 3581–3586. http://doi.org/10.1016/0009-2509(95)00208-M
  • [17] Skelland, A. H. P., & Kanel, J. S. (1990). Minimum Impeller Speeds for Complete Dispersion of Non-Newtonian Liquid-Liquid Systems in Baffled Vessels. Industrial and Engineering Chemistry Research, 29(7), 1300–1306. http://doi.org/10.1021/ie00103a032
  • [18] Bhattacharya, S., Hebert, D., & Kresta, S. M. (2007). Air entrainment in baffled stirred tanks. Chemical Engineering Research and Design, 85(5 A), 654–664. http://doi.org/10.1205/cherd06184
  • [19] Rawle, A. (1993). Basic principles of particle size analysis, 44(0), 1–8. http://doi.org/10.1016/j.apgeochem.2015.02.008
  • [20] Cabaret, F., Bonnot, S., Fradette, L., & Tanguy, P. A. (2007). Mixing Time Analysis Using Colorimetric Methods and Image Processing. Industrial & Engineering Chemistry Research, 46(14), 5032–5042. http://doi.org/10.1021/ie0613265
  • [21] Tolosa, L. I., Forgiarini, A., Moreno, P., & Salager, J. L. (2006). Combined effects of formulation and stirring on emulsion drop size in the vicinity of three-phase behavior of surfactant-oil water systems. Industrial and Engineering Chemistry Research, 45(11), 3810–3814. http://doi.org/10.1021/ie060102j

The Effect of the Change of Impeller Speed on the Droplet Size Distribution of Pickering Emulsions in a Baffled Stirred Tank

Year 2020, Volume: 8 Issue: 1, 181 - 192, 28.01.2020
https://doi.org/10.21541/apjes.542644

Abstract

Pickering emulsions are
emulsions stabilized by solid particles. They are a potential alternative to
surfactant-based emulsions. The stability of a Pickering emulsion is related to
the size of the dispersed phase droplets. Smaller droplets are more
stable.  The stability of Pickering
emulsions depends on the properties of the particles used to produce the
emulsions and the agitation provided in the production process. This paper investigates
the effect of the change of impeller speed on the droplet size of Pickering
emulsions produced in a baffled stirred tank. Silicon oil was dispersed into
distilled water and stabilized with hydrophilic glass beads to form oil in
water Pickering emulsions. Two different impellers with different shearing
capacities at two different sizes were used: the Rushton turbine and the
pitched blade turbine. The resulting droplet size distribution was determined
with Malvern Mastersizer 3000®. For impellers with adequate flow, increasing
the impeller speed decreases the droplet size of the emulsion. Decreasing the
speed increases the droplet size of the emulsion. A speed hysteresis was
observed in the emulsion formation. Mixing time analysis confirmed that the
residence time of droplets in parts of the tank was the reason of the droplet
size decrease with increasing speed.



References

  • [1] Chen, G., & Tao, D. (2005). An experimental study of stability of oil–water emulsion. Fuel Processing Technology, 86(5), 499-508. doi:10.1016/j.fuproc.2004.03.010
  • [2] Pickering, S.U., 1907. Emulsions. J. Chem. Soc. 91, 2001.
  • [3] Binks, B. P. (2002). Particles as surfactants - Similarities and differences. Current Opinion in Colloid and Interface Science, 7(1–2), 21–41. http://doi.org/10.1016/S1359-0294(02)00008-0
  • [4] Binks, B. P., & Lumsdon, S. O. (2000). Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir, 16(23), 8622–8631. http://doi.org/10.1021/la000189s
  • [5] Binks, B. P., & Lumsdon, S. O. (2001). Pickering emulsions stabilized by monodisperse latex particles: Effects of particle size. Langmuir, 17(15), 4540–4547. http://doi.org/10.1021/la0103822
  • [6] Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 100–102(SUPPL.), 503–546. http://doi.org/10.1016/S0001-8686(02)00069-6
  • [7] Tsabet, È., & Fradette, L. (2015). Effect of the properties of oil, particles, and water on the production of Pickering emulsions. Chemical Engineering Research and Design, 97(1), 9–17. http://doi.org/10.1016/j.cherd.2015.02.016
  • [8] Arditty, S., Whitby, C. P., Binks, B. P., Schmitt, V., & Leal-Calderon, F. (2003). Some general features of limited coalescence in solid-stabilized emulsions. European Physical Journal E, 11(3), 273–281. http://doi.org/10.1140/epje/i2003-10018-6
  • [9] Madivala, B., Vandebril, S., Fransaer, J., & Vermant, J. (2009). Exploiting particle shape in solid stabilized emulsions. Soft Matter, 5(8), 1717. doi:10.1039/b816680c
  • [10] Kaptay, G. (2006). On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams, 283, 387–401. http://doi.org/10.1016/j.colsurfa.2005.12.021
  • [11] Walstra, P. (1993). Principles of emulsion formation. Chemical Engineering Science, 48(2), 333–349. http://doi.org/10.1016/0009-2509(93)80021-H
  • [12] Leng, D. E., & Calabrese, R. V. (2004). Immiscible Liquid – Liquid Systems. Handbook of Industrial Mixing: Science and Practice
  • [13] Zhou, G., & Kresta, S. M. (1998). Evolution of drop size distribution in liquid-liquid dispersions for various impellers. Chemical Engineering Science, 53(11), 2099–2113. http://doi.org/10.1016/S0009-2509(97)00437-5
  • [14] Siddiqui, S. W., & Norton, I. T. (2012). Oil-in-water emulsification using confined impinging jets. Journal of Colloid and Interface Science, 377(1), 213–221. http://doi.org/10.1016/j.jcis.2012.03.062
  • [15] Hemrajani, R., & Tatterson, G. (2004). Mechanically Stirred Vessels. Handbook of Industrial Mixing: Science and Practice. http://doi.org/10.1002/0471451452.ch6
  • [16] Wichterle, K. (1995). Drop breakup by impellers. Chemical Engineering Science, 50(22), 3581–3586. http://doi.org/10.1016/0009-2509(95)00208-M
  • [17] Skelland, A. H. P., & Kanel, J. S. (1990). Minimum Impeller Speeds for Complete Dispersion of Non-Newtonian Liquid-Liquid Systems in Baffled Vessels. Industrial and Engineering Chemistry Research, 29(7), 1300–1306. http://doi.org/10.1021/ie00103a032
  • [18] Bhattacharya, S., Hebert, D., & Kresta, S. M. (2007). Air entrainment in baffled stirred tanks. Chemical Engineering Research and Design, 85(5 A), 654–664. http://doi.org/10.1205/cherd06184
  • [19] Rawle, A. (1993). Basic principles of particle size analysis, 44(0), 1–8. http://doi.org/10.1016/j.apgeochem.2015.02.008
  • [20] Cabaret, F., Bonnot, S., Fradette, L., & Tanguy, P. A. (2007). Mixing Time Analysis Using Colorimetric Methods and Image Processing. Industrial & Engineering Chemistry Research, 46(14), 5032–5042. http://doi.org/10.1021/ie0613265
  • [21] Tolosa, L. I., Forgiarini, A., Moreno, P., & Salager, J. L. (2006). Combined effects of formulation and stirring on emulsion drop size in the vicinity of three-phase behavior of surfactant-oil water systems. Industrial and Engineering Chemistry Research, 45(11), 3810–3814. http://doi.org/10.1021/ie060102j
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Usman Kayode Abdulrasaq This is me 0000-0002-0372-9804

İnci Ayranci 0000-0003-4625-9862

Publication Date January 28, 2020
Submission Date March 21, 2019
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

IEEE U. K. Abdulrasaq and İ. Ayranci, “The Effect of the Change of Impeller Speed on the Droplet Size Distribution of Pickering Emulsions in a Baffled Stirred Tank”, APJES, vol. 8, no. 1, pp. 181–192, 2020, doi: 10.21541/apjes.542644.