Research Article
BibTex RIS Cite

Optimization of Cutting Forces During Turning of Composite Materials

Year 2020, Volume: 8 Issue: 3, 423 - 431, 30.09.2020
https://doi.org/10.21541/apjes.631260

Abstract

Composites are the type of materials designed and produced according to their usage area. Therefore, composite materials can be produced in accordance with the usage area using the same production method. This situation affects the machinability properties of composites, owing to the fact that different production parameters cause different mechanical properties. For this reason, it is important that the determination and optimization of cutting forces during machining of composite materials. In this context, the optimization of cutting forces of bronze matrix (CuSn10) composites which are reinforced with cast iron (GGG-40) produced using 3 different production temperatures (350,400 and 450˚C) and pressure (480, 640 and 820 MPa) and 4 different reinforcement (wt. %10, wt. %20, wt. %30, wt. %40) during dry turning. Full factorial design based 36 experiments were performed and resultant force calculation was carried out with measurement of cutting forces in 3 axes. During experiments cutting conditions were kept constant (cutting speed=50 m/min, feed rate=0,128 mm/rev and depth of cut=1 mm). As a result of analysis of variance (ANOVA), it was found that the parameter which has the most effect on the cutting forces is the production pressure with 80% contribution rate.

References

  • [1] H. Sepet, N. Tarakcioglu, and R. Misra, "Determination of the mechanical, thermal and physical properties of nano-CaCO3 filled high-density polyethylene nanocomposites produced in an industrial scale," J Compos Mater, vol. 50, no. 24, pp. 3445-3456, 2016.
  • [2] H. Sepet, B. Aydemir, and N. Tarakcioglu, "Evaluation of mechanical and thermal properties and creep behavior of micro-and nano-CaCO 3 particle-filled HDPE nano-and microcomposites produced in large scale," Polymer Bulletin, pp. 1-19, 2019.
  • [3] A. Aslan, O. S. Sahin, E. Salur, A. Gunes, A. Akdemir, and H. B. Karadag, "A new method for recycling of metal chips," Journal of Selçuk University Natural and Applied Science, vol. 4, no. 1, pp. 1-12, 2015.
  • [4] A. Aslan, E. Salur, A. Gunes, O. Sahin, H. Karadag, and A. Akdemir, "The mechanical properties of composite materials recycled from waste metallic chips under different pressures," International Journal of Environmental Science and Technology, pp. 1-8, 2019.
  • [5] K. K. Chawla, "Metal matrix composites," Mater Sci Tech-Lond, 2006.
  • [6] S. R. Bakshi, D. Lahiri, and A. Agarwal, "Carbon nanotube reinforced metal matrix composites-a review," International materials reviews, vol. 55, no. 1, pp. 41-64, 2010.
  • [7] J. Kaczmar, K. Pietrzak, and W. Włosiński, "The production and application of metal matrix composite materials," Journal of materials processing technology, vol. 106, no. 1-3, pp. 58-67, 2000.
  • [8] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, "Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites," Carbon, vol. 47, no. 3, pp. 570-577, 2009.
  • [9] J. Fogagnolo, E. Ruiz-Navas, M. Simón, and M. Martinez, "Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion," Journal of Materials Processing Technology, vol. 143, pp. 792-795, 2003.
  • [10] F. Tang, I. E. Anderson, T. Gnaupel-Herold, and H. Prask, "Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms," Materials Science and Engineering: A, vol. 383, no. 2, pp. 362-373, 2004.
  • [11] A. Aslan, E. Salur, A. Güneş, Ö. S. Şahin, H. B. Karadağ, and A. Akdemir, "Production and mechanical characterization of prismatic shape machine element by recycling of bronze and cast-iron chips," J Facul Eng Archit Gazi Univ, vol. 33, no. 3, pp. 1013-1027, 2018.
  • [12] I. Sabirov, O. Kolednik, and R. Pippan, "Homogenization of metal matrix composites by high-pressure torsion," Metallurgical and Materials Transactions A, vol. 36, no. 10, pp. 2861-2870, 2005.
  • [13] S. C. Tjong and Z. Ma, "Microstructural and mechanical characteristics of in situ metal matrix composites," Materials Science and Engineering: R: Reports, vol. 29, no. 3-4, pp. 49-113, 2000.
  • [14] A. Aslan, "Production of metal matrix composites by recycling of waste metal chips and their mechanical properties," Ms Thesis, Selçuk University, Department of Mechanical Engineering, Konya, 2014.
  • [15] S. Lo, S. Dionne, M. Sahoo, and H. Hawthorne, "Mechanical and tribological properties of zinc-aluminium metal-matrix composites," J Mater Sci, vol. 27, no. 21, pp. 5681-5691, 1992.
  • [16] J. Gronostajski, J. Kaczmar, H. Marciniak, and A. Matuszak, "Direct recycling of aluminium chips into extruded products," Journal of Materials Processing Technology, vol. 64, no. 1-3, pp. 149-156, 1997.
  • [17] J. Gronostajski, H. Marciniak, and A. Matuszak, "New methods of aluminium and aluminium-alloy chips recycling," Journal of materials processing technology, vol. 106, no. 1-3, pp. 34-39, 2000.
  • [18] Y. Tao, M.-Y. Zheng, X.-S. Hu, and W. Kun, "Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP," T Nonferr Metal Soc, vol. 20, pp. s604-s607, 2010.
  • [19] Ö. S. Şahin, A. Güneş, A. Aslan, E. Salur, H. B. Karadağ, and A. Akdemir, "Low-velocity impact behavior of porous metal matrix composites produced by recycling of bronze and iron chips," Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, pp. 1-8, 2017.
  • [20] E. Salur, "Investigation of machinability properties of metal matrix composites produced by recycling of waste metal chips," Ms thesis, Selçuk University, Department of Mechanical Engineering, Konya, 2017.
  • [21] E. Salur, A. Aslan, M. Kuntoglu, A. Gunes, and O. S. Sahin, "Experimental study and analysis of machinability characteristics of metal matrix composites during drilling," Composites Part B: Engineering, vol. 166, pp. 401-413, 2019.
  • [22] Ş. Karabulut and H. Karakoç, "Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters," Neural Computing and Applications, vol. 28, no. 2, pp. 313-327, 2017.
  • [23] S. A. Niknam, S. Kamalizadeh, A. Asgari, and M. Balazinski, "Turning titanium metal matrix composites (Ti-MMCs) with carbide and CBN inserts," The International Journal of Advanced Manufacturing Technology, vol. 97, no. 1-4, pp. 253-265, 2018.
  • [24] M. M. Barzani, S. Farahany, and V. Songmene, "Machinability characteristics, thermal and mechanical properties of Al-Mg2Si in-situ composite with bismuth," Measurement, vol. 110, pp. 263-274, 2017.
  • [25] J. d. Torralba, C. Da Costa, and F. Velasco, "P/M aluminum matrix composites: an overview," Journal of Materials Processing Technology, vol. 133, no. 1-2, pp. 203-206, 2003.
  • [26] R. N. Rai, G. Datta, M. Chakraborty, and A. Chattopadhyay, "A study on the machinability behaviour of Al–TiC composite prepared by in situ technique," Materials Science and Engineering: A, vol. 428, no. 1-2, pp. 34-40, 2006.
  • [27] K. Abdullah, S. SÜRÜCÜLER, and A. KİRİK, "Kesme Kuvvetlerinin Tahmini İçin Matematiksel Bir Model Geliştirme," Politeknik Dergisi, vol. 13, no. 1, pp. 15-20, 2010.
  • [28] D. S. C. Kishore, K. P. Rao, and A. Ramesh, "Optimization of machining parameters for improving cutting force and surface roughness in turning of Al6061-TiC in-situ metal matrix composites by using Taguchi method," Materials Today: Proceedings, vol. 2, no. 4-5, pp. 3075-3083, 2015.
  • [29] I. Hanafi, A. Khamlichi, F. M. Cabrera, P. J. N. López, and A. Jabbouri, "Fuzzy rule based predictive model for cutting force in turning of reinforced PEEK composite," Measurement, vol. 45, no. 6, pp. 1424-1435, 2012.
  • [30] A. Salımıasl and M. Rafıghı, "Titreşim ve Kesme Kuvveti Esaslı Takım Aşınmasının Bulanık Mantıkla İzlenmesi ve Tahmini," Politeknik Dergisi, vol. 20, no. 1, pp. 111-120, 2017.
  • [31] M. Kuntoğlu and H. Sağlam, "Investigation of progressive tool wear for determining of optimized machining parameters in turning," Measurement, vol. 140, pp. 427-436, 2019.
  • [32] C. Fetecau and F. Stan, "Study of cutting force and surface roughness in the turning of polytetrafluoroethylene composites with a polycrystalline diamond tool," Measurement, vol. 45, no. 6, pp. 1367-1379, 2012.
  • [33] D. S. C. Kishore, K. P. Rao, and A. Mahamani, "Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite," Procedia materials science, vol. 6, pp. 1040-1050, 2014.
  • [34] Ş. Karabulut, "Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method," Measurement, vol. 66, pp. 139-149, 2015.
  • [35] A. Pugazhenthi, G. Kanagaraj, I. Dinaharan, and J. D. R. Selvam, "Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool," Measurement, vol. 121, pp. 39-46, 2018.
  • [36] A. Razavykia, S. Farahany, and N. M. Yusof, "Evaluation of cutting force and surface roughness in the dry turning of Al–Mg2Si in-situ metal matrix composite inoculated with bismuth using DOE approach," Measurement, vol. 76, pp. 170-182, 2015.
  • [37] C. Shoba, N. Ramanaiah, and D. N. Rao, "Effect of reinforcement on the cutting forces while machining metal matrix composites–an experimental approach," Engineering Science and Technology, an International Journal, vol. 18, no. 4, pp. 658-663, 2015.
  • [38] D. Srinivas, R. Kadadevaramath, B. L. Shankar, P. Nagraj, J. Bhaskaran, and D. Mallapur, "Optimization of Machinability Parameters of Al1100-B4C Composites using Taguchi Method," Materials Today: Proceedings, vol. 4, no. 10, pp. 11305-11313, 2017.
  • [39] A. Aslan, A. Güneş, E. Salur, Ö. S. Şahin, H. B. Karadağ, and A. Akdemir, "Mechanical properties and microstructure of composites produced by recycling metal chips," International Journal of Minerals, Metallurgy, and Materials, vol. 25, no. 9, pp. 1070-1079, 2018.

Kompozit Malzemelerin Tornalanması Esnasında Oluşan Kesme Kuvvetlerinin Optimizasyonu

Year 2020, Volume: 8 Issue: 3, 423 - 431, 30.09.2020
https://doi.org/10.21541/apjes.631260

Abstract

Kompozit malzemeler kullanılacağı yere göre tasarlanan ve üretilen malzemelerdir. Dolayısıyla kompozit malzemeler aynı üretim metodu kullanılarak kullanılacağı yere göre farklı üretim parametrelerinde üretilebilir. Farklı üretim parametrelerinde üretilen kompozit malzemeler farklı mekanik özelliklere sahip olacağı için bu durum kompozit malzemelerin işlenebilirlik özelliklerini etkiler. Bu sebeple kompozit malzemelerin işlenmesi esnasında oluşan kesme kuvvetlerinin tespit edilmesi ve optimizasyonu önem arz etmektedir. Bu kapsamda, 3 farklı üretim sıcaklığı (350, 400 ve 450˚C) ve basıncı (480, 640 ve 820 MPa) ile 4 farklı karışım oranında (ağ. %10, ağ. %20, ağ. %30, ağ. %40) üretilen dökme demir (GGG-40) takviyeli ve bronz matrisli (CuSn10) kompozit malzemelerin kuru kesme şartlarında tornalanması esnasında kesme kuvvetlerinin optimizasyonu gerçekleştirilmiştir. Tam faktöriyel tasarım prensibi ile 36 deney yapılmış ve üç eksende kesme kuvvetleri ölçümü alınarak bileşke kesme kuvveti hesabı yapılmıştır. Deneyler esnasında kesme şartları sabit tutulmuştur (kesme hızı=50 m/dak, ilerleme=0,128 mm/dev ve talaş derinliği=1 mm). Varyans analizi (ANOVA) neticesinde bileşke kesme kuvveti üzerine en çok etkisi olan parametrenin %80 katkı oranıyla birlikte üretim basıncı olduğu tespit edilmiştir

References

  • [1] H. Sepet, N. Tarakcioglu, and R. Misra, "Determination of the mechanical, thermal and physical properties of nano-CaCO3 filled high-density polyethylene nanocomposites produced in an industrial scale," J Compos Mater, vol. 50, no. 24, pp. 3445-3456, 2016.
  • [2] H. Sepet, B. Aydemir, and N. Tarakcioglu, "Evaluation of mechanical and thermal properties and creep behavior of micro-and nano-CaCO 3 particle-filled HDPE nano-and microcomposites produced in large scale," Polymer Bulletin, pp. 1-19, 2019.
  • [3] A. Aslan, O. S. Sahin, E. Salur, A. Gunes, A. Akdemir, and H. B. Karadag, "A new method for recycling of metal chips," Journal of Selçuk University Natural and Applied Science, vol. 4, no. 1, pp. 1-12, 2015.
  • [4] A. Aslan, E. Salur, A. Gunes, O. Sahin, H. Karadag, and A. Akdemir, "The mechanical properties of composite materials recycled from waste metallic chips under different pressures," International Journal of Environmental Science and Technology, pp. 1-8, 2019.
  • [5] K. K. Chawla, "Metal matrix composites," Mater Sci Tech-Lond, 2006.
  • [6] S. R. Bakshi, D. Lahiri, and A. Agarwal, "Carbon nanotube reinforced metal matrix composites-a review," International materials reviews, vol. 55, no. 1, pp. 41-64, 2010.
  • [7] J. Kaczmar, K. Pietrzak, and W. Włosiński, "The production and application of metal matrix composite materials," Journal of materials processing technology, vol. 106, no. 1-3, pp. 58-67, 2000.
  • [8] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, "Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites," Carbon, vol. 47, no. 3, pp. 570-577, 2009.
  • [9] J. Fogagnolo, E. Ruiz-Navas, M. Simón, and M. Martinez, "Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion," Journal of Materials Processing Technology, vol. 143, pp. 792-795, 2003.
  • [10] F. Tang, I. E. Anderson, T. Gnaupel-Herold, and H. Prask, "Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms," Materials Science and Engineering: A, vol. 383, no. 2, pp. 362-373, 2004.
  • [11] A. Aslan, E. Salur, A. Güneş, Ö. S. Şahin, H. B. Karadağ, and A. Akdemir, "Production and mechanical characterization of prismatic shape machine element by recycling of bronze and cast-iron chips," J Facul Eng Archit Gazi Univ, vol. 33, no. 3, pp. 1013-1027, 2018.
  • [12] I. Sabirov, O. Kolednik, and R. Pippan, "Homogenization of metal matrix composites by high-pressure torsion," Metallurgical and Materials Transactions A, vol. 36, no. 10, pp. 2861-2870, 2005.
  • [13] S. C. Tjong and Z. Ma, "Microstructural and mechanical characteristics of in situ metal matrix composites," Materials Science and Engineering: R: Reports, vol. 29, no. 3-4, pp. 49-113, 2000.
  • [14] A. Aslan, "Production of metal matrix composites by recycling of waste metal chips and their mechanical properties," Ms Thesis, Selçuk University, Department of Mechanical Engineering, Konya, 2014.
  • [15] S. Lo, S. Dionne, M. Sahoo, and H. Hawthorne, "Mechanical and tribological properties of zinc-aluminium metal-matrix composites," J Mater Sci, vol. 27, no. 21, pp. 5681-5691, 1992.
  • [16] J. Gronostajski, J. Kaczmar, H. Marciniak, and A. Matuszak, "Direct recycling of aluminium chips into extruded products," Journal of Materials Processing Technology, vol. 64, no. 1-3, pp. 149-156, 1997.
  • [17] J. Gronostajski, H. Marciniak, and A. Matuszak, "New methods of aluminium and aluminium-alloy chips recycling," Journal of materials processing technology, vol. 106, no. 1-3, pp. 34-39, 2000.
  • [18] Y. Tao, M.-Y. Zheng, X.-S. Hu, and W. Kun, "Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP," T Nonferr Metal Soc, vol. 20, pp. s604-s607, 2010.
  • [19] Ö. S. Şahin, A. Güneş, A. Aslan, E. Salur, H. B. Karadağ, and A. Akdemir, "Low-velocity impact behavior of porous metal matrix composites produced by recycling of bronze and iron chips," Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, pp. 1-8, 2017.
  • [20] E. Salur, "Investigation of machinability properties of metal matrix composites produced by recycling of waste metal chips," Ms thesis, Selçuk University, Department of Mechanical Engineering, Konya, 2017.
  • [21] E. Salur, A. Aslan, M. Kuntoglu, A. Gunes, and O. S. Sahin, "Experimental study and analysis of machinability characteristics of metal matrix composites during drilling," Composites Part B: Engineering, vol. 166, pp. 401-413, 2019.
  • [22] Ş. Karabulut and H. Karakoç, "Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters," Neural Computing and Applications, vol. 28, no. 2, pp. 313-327, 2017.
  • [23] S. A. Niknam, S. Kamalizadeh, A. Asgari, and M. Balazinski, "Turning titanium metal matrix composites (Ti-MMCs) with carbide and CBN inserts," The International Journal of Advanced Manufacturing Technology, vol. 97, no. 1-4, pp. 253-265, 2018.
  • [24] M. M. Barzani, S. Farahany, and V. Songmene, "Machinability characteristics, thermal and mechanical properties of Al-Mg2Si in-situ composite with bismuth," Measurement, vol. 110, pp. 263-274, 2017.
  • [25] J. d. Torralba, C. Da Costa, and F. Velasco, "P/M aluminum matrix composites: an overview," Journal of Materials Processing Technology, vol. 133, no. 1-2, pp. 203-206, 2003.
  • [26] R. N. Rai, G. Datta, M. Chakraborty, and A. Chattopadhyay, "A study on the machinability behaviour of Al–TiC composite prepared by in situ technique," Materials Science and Engineering: A, vol. 428, no. 1-2, pp. 34-40, 2006.
  • [27] K. Abdullah, S. SÜRÜCÜLER, and A. KİRİK, "Kesme Kuvvetlerinin Tahmini İçin Matematiksel Bir Model Geliştirme," Politeknik Dergisi, vol. 13, no. 1, pp. 15-20, 2010.
  • [28] D. S. C. Kishore, K. P. Rao, and A. Ramesh, "Optimization of machining parameters for improving cutting force and surface roughness in turning of Al6061-TiC in-situ metal matrix composites by using Taguchi method," Materials Today: Proceedings, vol. 2, no. 4-5, pp. 3075-3083, 2015.
  • [29] I. Hanafi, A. Khamlichi, F. M. Cabrera, P. J. N. López, and A. Jabbouri, "Fuzzy rule based predictive model for cutting force in turning of reinforced PEEK composite," Measurement, vol. 45, no. 6, pp. 1424-1435, 2012.
  • [30] A. Salımıasl and M. Rafıghı, "Titreşim ve Kesme Kuvveti Esaslı Takım Aşınmasının Bulanık Mantıkla İzlenmesi ve Tahmini," Politeknik Dergisi, vol. 20, no. 1, pp. 111-120, 2017.
  • [31] M. Kuntoğlu and H. Sağlam, "Investigation of progressive tool wear for determining of optimized machining parameters in turning," Measurement, vol. 140, pp. 427-436, 2019.
  • [32] C. Fetecau and F. Stan, "Study of cutting force and surface roughness in the turning of polytetrafluoroethylene composites with a polycrystalline diamond tool," Measurement, vol. 45, no. 6, pp. 1367-1379, 2012.
  • [33] D. S. C. Kishore, K. P. Rao, and A. Mahamani, "Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite," Procedia materials science, vol. 6, pp. 1040-1050, 2014.
  • [34] Ş. Karabulut, "Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method," Measurement, vol. 66, pp. 139-149, 2015.
  • [35] A. Pugazhenthi, G. Kanagaraj, I. Dinaharan, and J. D. R. Selvam, "Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool," Measurement, vol. 121, pp. 39-46, 2018.
  • [36] A. Razavykia, S. Farahany, and N. M. Yusof, "Evaluation of cutting force and surface roughness in the dry turning of Al–Mg2Si in-situ metal matrix composite inoculated with bismuth using DOE approach," Measurement, vol. 76, pp. 170-182, 2015.
  • [37] C. Shoba, N. Ramanaiah, and D. N. Rao, "Effect of reinforcement on the cutting forces while machining metal matrix composites–an experimental approach," Engineering Science and Technology, an International Journal, vol. 18, no. 4, pp. 658-663, 2015.
  • [38] D. Srinivas, R. Kadadevaramath, B. L. Shankar, P. Nagraj, J. Bhaskaran, and D. Mallapur, "Optimization of Machinability Parameters of Al1100-B4C Composites using Taguchi Method," Materials Today: Proceedings, vol. 4, no. 10, pp. 11305-11313, 2017.
  • [39] A. Aslan, A. Güneş, E. Salur, Ö. S. Şahin, H. B. Karadağ, and A. Akdemir, "Mechanical properties and microstructure of composites produced by recycling metal chips," International Journal of Minerals, Metallurgy, and Materials, vol. 25, no. 9, pp. 1070-1079, 2018.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emin Salur 0000-0003-0984-3496

Abdullah Aslan 0000-0001-8348-3471

Mustafa Kuntoğlu 0000-0002-7291-9468

Aydın Güneş 0000-0003-2903-5816

Ömer Sinan Şahin 0000-0002-0999-7332

Publication Date September 30, 2020
Submission Date October 9, 2019
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

IEEE E. Salur, A. Aslan, M. Kuntoğlu, A. Güneş, and Ö. S. Şahin, “Kompozit Malzemelerin Tornalanması Esnasında Oluşan Kesme Kuvvetlerinin Optimizasyonu”, APJES, vol. 8, no. 3, pp. 423–431, 2020, doi: 10.21541/apjes.631260.

Cited By