Research Article
BibTex RIS Cite

A concrete stress-strain model for analysis of high strength reinforced concrete columns

Year 2018, Volume: 1 Issue: 1, 25 - 37, 30.06.2018

Abstract




















A concrete stress-strain
model for analysis of eccentrically loaded both short and slender high strength
reinforced concrete columns is proposed in this paper. The mathematical model has
been developed based on the test data to represent the complete nonlinear stress-strain
relationship of high strength concrete ranging from 40 to 90 MPa. Several
slender high strength concrete columns available in the literature have been
analysed using both proposed nonlinear stress-strain model and the equivalent
rectangular stress block model to confirm the reliability and validity of the
proposed model. Good agreement has been achieved between the computed theoretical
ultimate strength capacities and the test results of high strength concrete
columns.

References

  • [1] Hognestad, E., Hanson, N.W., McHenry, D. (1955). Concrete stress distribution in ultimate stress design. ACI Journal, 27(4), 455-479.
  • [2] Kent, D.C., Park, R. (1971). Flexural members with confined concrete. Journal of Structural Division., ASCE, 97(7), 1969-1990.
  • [3] Popovics, S. (1973). Analytical approach the complete stress-strain curves. Cement and Concrete Research, 3(5), 583-599.
  • [4] Sheikh, S.A., Uzumeri, S.M. (1982). Analytical model for concrete confinement in tied columns. Journal of Structural Division, ASCE, 108(12), 2703-2722.
  • [5] Ahmad, S.H., Shah, S.P. (1982). Stress-strain curves of concrete confined by spiral reinforcement. ACI Journal, 79(6), 484-490.
  • [6] Fafitis, A., Shah, S.P. (1985). Prediction of ultimate behavior of confined columns subjected to large deformations. ACI Structural Journal, 82(4), 423-433.
  • [7] Sheikh, S.A., Yeh, C.C. (1986). Flexural behavior of confined concrete columns. ACI Structural Journal, 389-404.
  • [8] Hsu, L.S.M., Hsu, C.T.T. (1992). Stress-strain behavior of plain and fibrous high strength concrete under compression. Technical report 92-1, Structural Concrete Series, Department of Civil and Environmental Engineering, NJIT, Newark.
  • [9] Saatcioglu, M., Razvi, S.R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 18(6), 1590-1607.
  • [10] Nagashima, T., Sugano, S,, Kimura, H., Ichikawa, A. Monotonic axial compression test on ultra-high-strength concrete tied columns. Proc. 10th World Conference on Earthquake Engineering, Balkema, Rotterdam, The Netherlands, pp. 2983-2988.
  • [11] Muguruma, H., Nishiyama, M., Watanabe, F. (1993). Stress-strain curve for concrete with a wide range of compressive strength. Proc. Symp. On High-Strength Concrete, 314-321.
  • [12] Cusson, D., Paultre, P. (1995). Stress-strain model for confined high-strength concrete. Journal of Structural Engineering,121(3), 468-477.
  • [13] Razvi, S., Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering, 125(3), 281-289.
  • [14] Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 25, 1040-1051.
  • [15] Yong, Y.K., Nour, M.G., Nawy, E.G. (1988). Behavior of laterally confined high-strength concrete under axial loads. Journal of Structural Engineering, 114(2), 332-351.
  • [16] Mander, J.B., Priestley, J.N., Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
  • [17] Cusson, D., Paultre, P. (1992). High-strength concrete columns confined by rectangular ties. ASCE, Journal of Structural Engineering, 120(3), 783804.
  • [18] Polat, M.B. (1992) Behavior of normal and high strength concrete under axial compression. MASc thesis, Dept. Civ. Engrg. University of Toronto, Toronto, On, Canada, pp. 175.
  • [19] Razvi, S.R., Saatcioglu, M. (1994). Strength and deformability of confined high-strength concrete columns. ACI Structural Journal, 91(6), 678-687.
  • [20] Hsu, C.T.T., Hsu, L.S.M., Tsao, W.H. (1995). Biaxially loaded slender high-strength reinforced concrete columns with and without steel fibres. Magazine of Concrete Research, 47(173), 299310.
  • [21] Lloyd, N.A., Rangan, B.V.(1995). Behavior high-strength concrete columns under eccentric compression. Res.Rep. No.1/95, School of Civil Engineering, Curtin University of Technology, Perth, Australia.
  • [22] Lloyd, N.A., Rangan, B.V. (1996). Studies on high-strength concrete columns under eccentric compression. ACI Structural Journal, 93(6), 63138.
  • [23] Ibrahim, H.H.H., MacGregor, J.G. (1996). Tests of eccentrically loaded high-strength concrete columns. ACI Structural Journal, 93(5), 585-594.
  • [24] Saatcioglu, M., Razvi, S.R. (1998). High-strength concrete columns with square sections under concentric compression. Journal of Structural Engineering, 124(12), 1438-1447.
  • [25] Chuang, P.H., Kong, S.K. (1998). Strength of slender reinforced concrete columns. Journal of Structural Engineering, 124(9), 992-998.
  • [26] Rangan, B.V. (1999). Studies on high-performance high-strength concrete columns. In:Proceedings of the second CANMET/ACI International Conference, Gramado, RS: Brazil, 745-764.
  • [27] Stewart, M.G., Attard, M.M. (1999). Reliability and model accuracy for high-strength concrete column design. Journal of Structural Engineering, 125(3), 290-300.
  • [28] Lee, J.H., Son, H.S. (2000). Failure and strength of high-strength concrete columns subjected to eccentric loads. ACI Structural Journal, 97(1), 75-85.
  • [29] Sarker, P.K., Rangan, B.V. (2003). Reinforced concrete columns under unequal load eccentricities. ACI Structural Journal, 100(4), 519-528.
  • [30] Diniz, S.M.C., Frangopol, D.M. (2003). Safety evaluation of slender high-strength concrete columns under sustained loads. Computers &Structures, 81, 147586.
  • [31] Canbay, E., Ozcebe, G., Ersoy, U. (2006). High-strength concrete columns under eccentric load. ASCE, Journal of Structural Engineering, 132(7), 1052-1060.
  • [32] Tokgoz, S. (2009). Effects of steel fiber addition on the behaviour of biaxially loaded high strength concrete columns, Materials and Structures, 42(8), 1125-1138.
  • [33] Dundar, C., Tokgoz, S. (2012). Strength of biaxially loaded high strength reinforced concrete columns, Structural Engineering and Mechanics, 44(5), 649-661.
  • [34] Xu, C., Jin, L., Ding, Z., Li, D., Du, X. (2016). Size effect tests of high-strength RC columns under eccentric loading. Engineering Structures, 126, 78-91.
  • [35] Ozbakkaloglu, T., Saatcioglu, M. (2004). Rectangular stress block for high strength concrete. ACI Structural Journal, 101(4), 47583.
  • [36] ACI-ASCE Committee 441. (1997). High-strength concrete columns: State of the art. ACI Structural Journal, 94(3), 32335.
  • [37] Dundar, C., Tokgoz, S., Tanrikulu, A.K., Baran, T. (2008). Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load. Building and Environment, 43(6), 11091120.
  • [38] ACI 318-08: Building code requirements for structural concrete (2002). American Concrete Institute, Farmington Hills, Mich.

Yüksek dayanımlı betonarme kolonların analizi için beton gerilme-birim deformasyon modeli

Year 2018, Volume: 1 Issue: 1, 25 - 37, 30.06.2018

Abstract




















Sunulan çalışmada, eksantrik yüklemeye maruz yüksek
dayanımlı kısa ve narin betonarme kolonların analizi için beton gerilme-birim
deformasyon modeli önerilmektedir. Beton dayanımı 40 ile 90 MPa arasında
değişen ve doğrusal olmayan beton gerilme-birim deformasyon modelini temsil
eden matematiksel model deneysel verilere dayandırılarak geliştirilmiştir. Beton
modelinin güvenilirliğini ve geçerliliğini doğrulamak için literatürde bulunan
birçok deneysel kolon önerilen beton modeli ve dikdörtgen gerilme dağılım
modeli kullanılarak analiz edilmiştir. Hesaplanan teorik yüksek dayanımlı kolon
taşıma gücü değerlerinin test değerleri ile uyumlu olduğu elde edilmiştir.

References

  • [1] Hognestad, E., Hanson, N.W., McHenry, D. (1955). Concrete stress distribution in ultimate stress design. ACI Journal, 27(4), 455-479.
  • [2] Kent, D.C., Park, R. (1971). Flexural members with confined concrete. Journal of Structural Division., ASCE, 97(7), 1969-1990.
  • [3] Popovics, S. (1973). Analytical approach the complete stress-strain curves. Cement and Concrete Research, 3(5), 583-599.
  • [4] Sheikh, S.A., Uzumeri, S.M. (1982). Analytical model for concrete confinement in tied columns. Journal of Structural Division, ASCE, 108(12), 2703-2722.
  • [5] Ahmad, S.H., Shah, S.P. (1982). Stress-strain curves of concrete confined by spiral reinforcement. ACI Journal, 79(6), 484-490.
  • [6] Fafitis, A., Shah, S.P. (1985). Prediction of ultimate behavior of confined columns subjected to large deformations. ACI Structural Journal, 82(4), 423-433.
  • [7] Sheikh, S.A., Yeh, C.C. (1986). Flexural behavior of confined concrete columns. ACI Structural Journal, 389-404.
  • [8] Hsu, L.S.M., Hsu, C.T.T. (1992). Stress-strain behavior of plain and fibrous high strength concrete under compression. Technical report 92-1, Structural Concrete Series, Department of Civil and Environmental Engineering, NJIT, Newark.
  • [9] Saatcioglu, M., Razvi, S.R. (1992). Strength and ductility of confined concrete. Journal of Structural Engineering, 18(6), 1590-1607.
  • [10] Nagashima, T., Sugano, S,, Kimura, H., Ichikawa, A. Monotonic axial compression test on ultra-high-strength concrete tied columns. Proc. 10th World Conference on Earthquake Engineering, Balkema, Rotterdam, The Netherlands, pp. 2983-2988.
  • [11] Muguruma, H., Nishiyama, M., Watanabe, F. (1993). Stress-strain curve for concrete with a wide range of compressive strength. Proc. Symp. On High-Strength Concrete, 314-321.
  • [12] Cusson, D., Paultre, P. (1995). Stress-strain model for confined high-strength concrete. Journal of Structural Engineering,121(3), 468-477.
  • [13] Razvi, S., Saatcioglu, M. (1999). Confinement model for high-strength concrete. Journal of Structural Engineering, 125(3), 281-289.
  • [14] Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 25, 1040-1051.
  • [15] Yong, Y.K., Nour, M.G., Nawy, E.G. (1988). Behavior of laterally confined high-strength concrete under axial loads. Journal of Structural Engineering, 114(2), 332-351.
  • [16] Mander, J.B., Priestley, J.N., Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826.
  • [17] Cusson, D., Paultre, P. (1992). High-strength concrete columns confined by rectangular ties. ASCE, Journal of Structural Engineering, 120(3), 783804.
  • [18] Polat, M.B. (1992) Behavior of normal and high strength concrete under axial compression. MASc thesis, Dept. Civ. Engrg. University of Toronto, Toronto, On, Canada, pp. 175.
  • [19] Razvi, S.R., Saatcioglu, M. (1994). Strength and deformability of confined high-strength concrete columns. ACI Structural Journal, 91(6), 678-687.
  • [20] Hsu, C.T.T., Hsu, L.S.M., Tsao, W.H. (1995). Biaxially loaded slender high-strength reinforced concrete columns with and without steel fibres. Magazine of Concrete Research, 47(173), 299310.
  • [21] Lloyd, N.A., Rangan, B.V.(1995). Behavior high-strength concrete columns under eccentric compression. Res.Rep. No.1/95, School of Civil Engineering, Curtin University of Technology, Perth, Australia.
  • [22] Lloyd, N.A., Rangan, B.V. (1996). Studies on high-strength concrete columns under eccentric compression. ACI Structural Journal, 93(6), 63138.
  • [23] Ibrahim, H.H.H., MacGregor, J.G. (1996). Tests of eccentrically loaded high-strength concrete columns. ACI Structural Journal, 93(5), 585-594.
  • [24] Saatcioglu, M., Razvi, S.R. (1998). High-strength concrete columns with square sections under concentric compression. Journal of Structural Engineering, 124(12), 1438-1447.
  • [25] Chuang, P.H., Kong, S.K. (1998). Strength of slender reinforced concrete columns. Journal of Structural Engineering, 124(9), 992-998.
  • [26] Rangan, B.V. (1999). Studies on high-performance high-strength concrete columns. In:Proceedings of the second CANMET/ACI International Conference, Gramado, RS: Brazil, 745-764.
  • [27] Stewart, M.G., Attard, M.M. (1999). Reliability and model accuracy for high-strength concrete column design. Journal of Structural Engineering, 125(3), 290-300.
  • [28] Lee, J.H., Son, H.S. (2000). Failure and strength of high-strength concrete columns subjected to eccentric loads. ACI Structural Journal, 97(1), 75-85.
  • [29] Sarker, P.K., Rangan, B.V. (2003). Reinforced concrete columns under unequal load eccentricities. ACI Structural Journal, 100(4), 519-528.
  • [30] Diniz, S.M.C., Frangopol, D.M. (2003). Safety evaluation of slender high-strength concrete columns under sustained loads. Computers &Structures, 81, 147586.
  • [31] Canbay, E., Ozcebe, G., Ersoy, U. (2006). High-strength concrete columns under eccentric load. ASCE, Journal of Structural Engineering, 132(7), 1052-1060.
  • [32] Tokgoz, S. (2009). Effects of steel fiber addition on the behaviour of biaxially loaded high strength concrete columns, Materials and Structures, 42(8), 1125-1138.
  • [33] Dundar, C., Tokgoz, S. (2012). Strength of biaxially loaded high strength reinforced concrete columns, Structural Engineering and Mechanics, 44(5), 649-661.
  • [34] Xu, C., Jin, L., Ding, Z., Li, D., Du, X. (2016). Size effect tests of high-strength RC columns under eccentric loading. Engineering Structures, 126, 78-91.
  • [35] Ozbakkaloglu, T., Saatcioglu, M. (2004). Rectangular stress block for high strength concrete. ACI Structural Journal, 101(4), 47583.
  • [36] ACI-ASCE Committee 441. (1997). High-strength concrete columns: State of the art. ACI Structural Journal, 94(3), 32335.
  • [37] Dundar, C., Tokgoz, S., Tanrikulu, A.K., Baran, T. (2008). Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load. Building and Environment, 43(6), 11091120.
  • [38] ACI 318-08: Building code requirements for structural concrete (2002). American Concrete Institute, Farmington Hills, Mich.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serkan Tokgöz

Cengiz Dündar

Publication Date June 30, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Tokgöz, S., & Dündar, C. (2018). A concrete stress-strain model for analysis of high strength reinforced concrete columns. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 1(1), 25-37.
AMA Tokgöz S, Dündar C. A concrete stress-strain model for analysis of high strength reinforced concrete columns. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. June 2018;1(1):25-37.
Chicago Tokgöz, Serkan, and Cengiz Dündar. “A Concrete Stress-Strain Model for Analysis of High Strength Reinforced Concrete Columns”. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1, no. 1 (June 2018): 25-37.
EndNote Tokgöz S, Dündar C (June 1, 2018) A concrete stress-strain model for analysis of high strength reinforced concrete columns. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1 1 25–37.
IEEE S. Tokgöz and C. Dündar, “A concrete stress-strain model for analysis of high strength reinforced concrete columns”, Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 1, no. 1, pp. 25–37, 2018.
ISNAD Tokgöz, Serkan - Dündar, Cengiz. “A Concrete Stress-Strain Model for Analysis of High Strength Reinforced Concrete Columns”. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi 1/1 (June 2018), 25-37.
JAMA Tokgöz S, Dündar C. A concrete stress-strain model for analysis of high strength reinforced concrete columns. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2018;1:25–37.
MLA Tokgöz, Serkan and Cengiz Dündar. “A Concrete Stress-Strain Model for Analysis of High Strength Reinforced Concrete Columns”. Artıbilim: Adana Bilim Ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, vol. 1, no. 1, 2018, pp. 25-37.
Vancouver Tokgöz S, Dündar C. A concrete stress-strain model for analysis of high strength reinforced concrete columns. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 2018;1(1):25-37.