Review
BibTex RIS Cite

Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar

Year 2021, Volume: 22 Issue: 1, 148 - 160, 12.05.2021
https://doi.org/10.17474/artvinofd.830601

Abstract

Son yıllarda, dünya genelinde artan nüfus ile birlikte tarımsal ve endüstriyel faaliyetler giderek artmıştır. Bu faaliyetler sırasında ortaya çıkan organik maddeler, inorganik anyonlar, toksik ağır metaller, zehirli gazlar vb. birçok kirletici çevreye salınmakta ve özellikle sularda önemli derecede kirlilik sorunlarına yol açmaktadır. Bu nedenle çevre dostu ve uygun maliyetli arıtma teknolojilerine ihtiyaç duyulmaktadır. Atık sularda kullanılan adsorpsiyon işlemi çevre dostu arıtma teknolojilerinden biridir. Çeşitli doğal kaynaklardan elde edilebilen selülozik maddeler adsorbanlar olarak kullanılabilmektedir. Atık sularda bulunan organik kirleticiler ve ağır metal iyonlarının adsorpsiyon kapasiteleri kimyasal işlemlerden etkilenmekte olup, modifiye edilmiş selülozun modifiye edilmemiş selüloza göre daha yüksek adsorpsiyon kapasitesi sergilediği bilinmektedir. Bu derlemede, literatürde yer alan çeşitli nanoselüloz esaslı adsorbanların, özellikle atık sularda bulunan boyaların uzaklaştırılmasında sergiledikleri adsorpsiyon kapasiteleri ve bu adsorbanların modifikasyonları sonrasında yapılarının karakterizasyonunda kullanılan FTIR ve SEM analizleri incelenmiştir. Nanoselüloz esaslı adsorbanların atık sulardaki boyaların uzaklaştırılmasında iyi bir potansiyel sergilediği görülmektedir. Çevre kirliliğini minimuma indirmek için ucuz ve daha etkili selüloz esaslı adsorbanların modifikasyonlarla geliştirilebileceği düşünülmektedir.

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278
  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresource Technology 99(6):1664–1671
  • Anonim (2013) NanoHeal. http://www.pfi.no/New-Biomaterials/Projects/NanoHeal. Erişim: 15.10.2014.
  • Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects 299:232–238
  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wagberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685
  • Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21(3):1655-1665
  • Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core–shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Bioresource Technology 218:326–334
  • Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges. Polymer-Plastıcs Technology And Engıneerıng 56:805-823
  • Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical Engineering Journal 260:269-283
  • Camcıoğlu Ş (2010) Su bazlı boya üretim tesislerinin atıksularının arıtılmasında genelleştirilmiş minimum değişmeli algoritma ile pH kontrolü. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara
  • Cao X, Chen Y, Chang PR, Muir AD, Falk D (2008) Starch-based nanocomposites reinforced with flax cellulose Nanocrystals. XPRESS Polymer Letters 2(7):502-510
  • Chan CH, Chia CH, Zakaria S, Sajab MS, Chin SX (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Advances 5:18204–18212
  • Chan HC, Chia CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterization of cellulose and nano-crystalline from kenaf core wood. BioResources 8:785-794
  • Chen W, Li Q, Wang Y, Xin YX, Zeng J, Yu H, Liu Y, Li J (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161
  • Chong KY, Chia CH, Zakaria S, Sajab MS, Chook SW, Khiew PS (2015) CaCO3- decorated cellulose aerogel for removal of Congo Red from aqueous solution. Cellulose, 22(4):2683–2691
  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology 97:1061–1085
  • Deng C, Liu J, Zhou W, Zhang YK, Du KF, Zhao ZM (2012) Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue. Chemical Engineering Journal 200–202:452–458
  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Canadian Journal of Chemistry 86(6):484-494
  • Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies. Chemical Engineering Journal 168:77–85
  • Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in tmp paper. Nordic Pulp & Paper Research Journal 23(3):299-304
  • Fabio PG, Nuno HCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Carmen SRF (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205-211
  • Freundlich H (1906) Uber die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57:385–470
  • Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton, p 304
  • Gómez CH, Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: a review. Food Hydrocolloids 57:178-186
  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemichal Reviews 110:3479–3500
  • He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Applied Materials & Interfaces 5:8796–8804
  • Hubbe MA, Heitmann JA (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioRessources 2(3):500-533
  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibres for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978
  • Ioelovıch M, Leykin A (2004) Nanocellulose and its application. Journal "Scientific Israel – Technological Advantages" 6(3):17-24
  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A 89(2):461–466
  • Jin L, Li W, Xu Q, Sun Q (2015b) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456.
  • Jin L, Sun Q, Xu Q, Xu Y (2015a) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology 197:348–355
  • Kabay N (2002) Yeni O,O’-dihidroksi azo boyarmaddelerin metal komplekslerinin sentezi ve yapılarının aydınlatılması. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Denizli
  • Karim Z, Mathew AP, Grahn M, Mouzonb J, Oksmana K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydrate Polymers 112:668–676
  • Kayranli B (2011) Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution: isotherm, kinetic and thermodynamic study. Chemical Engineering Journal 173:782–791
  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50(24):5438–5466
  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as ınnovative polymers in research and application. Advances in Polymer Science 205:49-96
  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40:1361–1403
  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers 90:735–764
  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. hydrogen bonds in native celluloses. Journal of Polymer Science 37:385- 395
  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and futureprospect. European Polymer Journal 59:302–325
  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Biobased nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461
  • Ma H, Burger C, Hsiao BS, Chu B (2011) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13(1):180–186
  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197
  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766
  • Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738
  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134
  • Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934-1941
  • Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose, 18:1201–1212
  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment 58:179–196
  • Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055
  • Piccin JS, Gomes CS, Feris LA, Gutterres M (2012) Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal 183:30–38
  • Poyraz B, Arslan R, Akıncı A, Tozluoğlu A (2018) Chemical and morpholgical analysis of modified nanocellulose. Artvin Coruh University Journal of Forestry Faculty 19(1):39-47
  • Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297-303
  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Research 47:3931–3946
  • Retulaınen E, Luukko K, Fagerholm K, Pere J, Laine J, Paulapuro H (2002) Papermaking quality of fines from different pulps-the effect of size, shape and chemical composition. Appita Journal 55(6):457-460
  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chemical Society Reviews 38:2046–2064
  • Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. International Journal of Biological Macromolecules 73:72–75
  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research 7:331–342
  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459-94
  • Smrckova D, Michalek J, Karpushkin E, Hobzova R, Miroslava M, Gatenholm P (2012) Methacrylate hydrogels reinforced with bacterial cellulose. Polymer International 61:1193–1201
  • Swaminathan K, Sandhya S, Carmalin Sophia A, Pachhade KY, Subrahmanyam YV (2003) Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere 50:619–625
  • Tavakolian M, Wiebe H, Sadeghi MA, Van de Ven TGM (2019) Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Applied Materials & Interfaces 12(4):5040-5049
  • Tozluoğlu A, Poyraz B (2016) Effects of cellulose micro/nanofibers as paper additives in kraft and kraft-NaBH4 pulps. Nordic Pulp & Paper Research Journal 31(4):561-572
  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353
  • Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Applied Clay Science 99:83–92
  • Voisin H, Bergström L, Liu P, Mathew Aji P (2017) Nanocellulose-based materials for water purification. Nanomaterials 7(57)
  • Wang W, Fu S, Peng Y, Zheng X, Ratulainen EA (2018) A prediction model for grafting Reactive Red 120 on nanocellulose. BioResources 13(4):8814-8822
  • Wang Y, Mu Y, Zhao QB, Yu HQ (2006) Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Separation and Purification Technology 50:1–7
  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science 209:172–184
  • Yakkan E (2015) Nanoselüloz-propilen kompozitler. İzmir Katip Çelebi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir
  • Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chemistry & Engineering 4:2632–2643
  • Zaman M, Xiao HN, Chibante F, Ni YH (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydrate Polymers 89:163–170
  • Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251:17–24
  • Zhu W, Liu L, Liao Q, Chen X, Qian Z, Shen J, Liang J, Yao J (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797

Functionalized nanocellulose based adsorbents for dye removal from wastewater

Year 2021, Volume: 22 Issue: 1, 148 - 160, 12.05.2021
https://doi.org/10.17474/artvinofd.830601

Abstract

In recent years, agricultural and industrial activities have gradually increased with the increasing population worldwide. Many pollutants, such as organic substances, inorganic anions, toxic heavy metals, toxic gases etc., generated during these activities are released into the environment and cause significant pollution problems, especially in water. Therefore, environmentally friendly and cost-effective treatment technologies are needed. The adsorption process used in waste water is one of the environmentally friendly purification technologies. Cellulosic materials obtained from various natural sources can be used as adsorbents. The adsorption capacity of organic pollutants and heavy metal ions in wastewater is affected by chemical processes, and it is known that modified cellulose exhibits higher adsorption capacity than unmodified cellulose. In this review, the adsorption capacities of various nanocellulose-based adsorbents, especially in the removal of dyes in wastewater, and the FTIR and SEM analyzes used in the characterization of the structures of these adsorbents after modifications were examined. Nanocellulose-based adsorbents appear to exhibit good potential in removing dyes in the waste water. It is thought that cheap and more effective cellulose-based adsorbents can be developed with modifications to minimize environmental pollution.

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278
  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresource Technology 99(6):1664–1671
  • Anonim (2013) NanoHeal. http://www.pfi.no/New-Biomaterials/Projects/NanoHeal. Erişim: 15.10.2014.
  • Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects 299:232–238
  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wagberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685
  • Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21(3):1655-1665
  • Beyki MH, Bayat M, Shemirani F (2016) Fabrication of core–shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Bioresource Technology 218:326–334
  • Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges. Polymer-Plastıcs Technology And Engıneerıng 56:805-823
  • Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical Engineering Journal 260:269-283
  • Camcıoğlu Ş (2010) Su bazlı boya üretim tesislerinin atıksularının arıtılmasında genelleştirilmiş minimum değişmeli algoritma ile pH kontrolü. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara
  • Cao X, Chen Y, Chang PR, Muir AD, Falk D (2008) Starch-based nanocomposites reinforced with flax cellulose Nanocrystals. XPRESS Polymer Letters 2(7):502-510
  • Chan CH, Chia CH, Zakaria S, Sajab MS, Chin SX (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Advances 5:18204–18212
  • Chan HC, Chia CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterization of cellulose and nano-crystalline from kenaf core wood. BioResources 8:785-794
  • Chen W, Li Q, Wang Y, Xin YX, Zeng J, Yu H, Liu Y, Li J (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7:154–161
  • Chong KY, Chia CH, Zakaria S, Sajab MS, Chook SW, Khiew PS (2015) CaCO3- decorated cellulose aerogel for removal of Congo Red from aqueous solution. Cellulose, 22(4):2683–2691
  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology 97:1061–1085
  • Deng C, Liu J, Zhou W, Zhang YK, Du KF, Zhao ZM (2012) Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue. Chemical Engineering Journal 200–202:452–458
  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Canadian Journal of Chemistry 86(6):484-494
  • Dural MU, Cavas L, Papageorgiou SK, Katsaros FK (2011) Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies. Chemical Engineering Journal 168:77–85
  • Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in tmp paper. Nordic Pulp & Paper Research Journal 23(3):299-304
  • Fabio PG, Nuno HCS, Trovatti E, Serafim LS, Duarte MF, Silvestre AJD, Neto CP, Carmen SRF (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205-211
  • Freundlich H (1906) Uber die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57:385–470
  • Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton, p 304
  • Gómez CH, Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: a review. Food Hydrocolloids 57:178-186
  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemichal Reviews 110:3479–3500
  • He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Applied Materials & Interfaces 5:8796–8804
  • Hubbe MA, Heitmann JA (2007) Review of factors affecting the release of water from cellulosic fibers during paper manufacture. BioRessources 2(3):500-533
  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibres for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978
  • Ioelovıch M, Leykin A (2004) Nanocellulose and its application. Journal "Scientific Israel – Technological Advantages" 6(3):17-24
  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Applied Physics A 89(2):461–466
  • Jin L, Li W, Xu Q, Sun Q (2015b) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456.
  • Jin L, Sun Q, Xu Q, Xu Y (2015a) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology 197:348–355
  • Kabay N (2002) Yeni O,O’-dihidroksi azo boyarmaddelerin metal komplekslerinin sentezi ve yapılarının aydınlatılması. Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Denizli
  • Karim Z, Mathew AP, Grahn M, Mouzonb J, Oksmana K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydrate Polymers 112:668–676
  • Kayranli B (2011) Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution: isotherm, kinetic and thermodynamic study. Chemical Engineering Journal 173:782–791
  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition 50(24):5438–5466
  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as ınnovative polymers in research and application. Advances in Polymer Science 205:49-96
  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40:1361–1403
  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers 90:735–764
  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. hydrogen bonds in native celluloses. Journal of Polymer Science 37:385- 395
  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and futureprospect. European Polymer Journal 59:302–325
  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Biobased nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461
  • Ma H, Burger C, Hsiao BS, Chu B (2011) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13(1):180–186
  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197
  • Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766
  • Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738
  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134
  • Pääkko M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934-1941
  • Pahimanolis N, Hippi U, Johansson LS, Saarinen T, Houbenov N, Ruokolainen J, Seppala J (2011) Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose, 18:1201–1212
  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigment 58:179–196
  • Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055
  • Piccin JS, Gomes CS, Feris LA, Gutterres M (2012) Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal 183:30–38
  • Poyraz B, Arslan R, Akıncı A, Tozluoğlu A (2018) Chemical and morpholgical analysis of modified nanocellulose. Artvin Coruh University Journal of Forestry Faculty 19(1):39-47
  • Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297-303
  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Research 47:3931–3946
  • Retulaınen E, Luukko K, Fagerholm K, Pere J, Laine J, Paulapuro H (2002) Papermaking quality of fines from different pulps-the effect of size, shape and chemical composition. Appita Journal 55(6):457-460
  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chemical Society Reviews 38:2046–2064
  • Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. International Journal of Biological Macromolecules 73:72–75
  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research 7:331–342
  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459-94
  • Smrckova D, Michalek J, Karpushkin E, Hobzova R, Miroslava M, Gatenholm P (2012) Methacrylate hydrogels reinforced with bacterial cellulose. Polymer International 61:1193–1201
  • Swaminathan K, Sandhya S, Carmalin Sophia A, Pachhade KY, Subrahmanyam YV (2003) Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere 50:619–625
  • Tavakolian M, Wiebe H, Sadeghi MA, Van de Ven TGM (2019) Dye removal using hairy nanocellulose: experimental and theoretical investigations. ACS Applied Materials & Interfaces 12(4):5040-5049
  • Tozluoğlu A, Poyraz B (2016) Effects of cellulose micro/nanofibers as paper additives in kraft and kraft-NaBH4 pulps. Nordic Pulp & Paper Research Journal 31(4):561-572
  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353
  • Unuabonah EI, Taubert A (2014) Clay-polymer nanocomposites (CPNs): adsorbents of the future for water treatment. Applied Clay Science 99:83–92
  • Voisin H, Bergström L, Liu P, Mathew Aji P (2017) Nanocellulose-based materials for water purification. Nanomaterials 7(57)
  • Wang W, Fu S, Peng Y, Zheng X, Ratulainen EA (2018) A prediction model for grafting Reactive Red 120 on nanocellulose. BioResources 13(4):8814-8822
  • Wang Y, Mu Y, Zhao QB, Yu HQ (2006) Isotherms, kinetics and thermodynamics of dye biosorption by anaerobic sludge. Separation and Purification Technology 50:1–7
  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science 209:172–184
  • Yakkan E (2015) Nanoselüloz-propilen kompozitler. İzmir Katip Çelebi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir
  • Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chemistry & Engineering 4:2632–2643
  • Zaman M, Xiao HN, Chibante F, Ni YH (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydrate Polymers 89:163–170
  • Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal 251:17–24
  • Zhu W, Liu L, Liao Q, Chen X, Qian Z, Shen J, Liang J, Yao J (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797
There are 75 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Review
Authors

Recai Arslan 0000-0002-4038-2176

Ayhan Tozluoğlu 0000-0002-1828-9450

Selva Sertkaya 0000-0002-0490-1821

Hakan Fidan 0000-0003-3361-8336

Sibel Küçük 0000-0002-7852-5128

Publication Date May 12, 2021
Acceptance Date March 26, 2021
Published in Issue Year 2021Volume: 22 Issue: 1

Cite

APA Arslan, R., Tozluoğlu, A., Sertkaya, S., Fidan, H., et al. (2021). Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(1), 148-160. https://doi.org/10.17474/artvinofd.830601
AMA Arslan R, Tozluoğlu A, Sertkaya S, Fidan H, Küçük S. Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar. ACUJFF. May 2021;22(1):148-160. doi:10.17474/artvinofd.830601
Chicago Arslan, Recai, Ayhan Tozluoğlu, Selva Sertkaya, Hakan Fidan, and Sibel Küçük. “Atık Sularda Boya Giderimi için Fonsiyonellenmiş nanoselüloz Esaslı Adsorbanlar”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 22, no. 1 (May 2021): 148-60. https://doi.org/10.17474/artvinofd.830601.
EndNote Arslan R, Tozluoğlu A, Sertkaya S, Fidan H, Küçük S (May 1, 2021) Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 22 1 148–160.
IEEE R. Arslan, A. Tozluoğlu, S. Sertkaya, H. Fidan, and S. Küçük, “Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar”, ACUJFF, vol. 22, no. 1, pp. 148–160, 2021, doi: 10.17474/artvinofd.830601.
ISNAD Arslan, Recai et al. “Atık Sularda Boya Giderimi için Fonsiyonellenmiş nanoselüloz Esaslı Adsorbanlar”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 22/1 (May 2021), 148-160. https://doi.org/10.17474/artvinofd.830601.
JAMA Arslan R, Tozluoğlu A, Sertkaya S, Fidan H, Küçük S. Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar. ACUJFF. 2021;22:148–160.
MLA Arslan, Recai et al. “Atık Sularda Boya Giderimi için Fonsiyonellenmiş nanoselüloz Esaslı Adsorbanlar”. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol. 22, no. 1, 2021, pp. 148-60, doi:10.17474/artvinofd.830601.
Vancouver Arslan R, Tozluoğlu A, Sertkaya S, Fidan H, Küçük S. Atık sularda boya giderimi için fonsiyonellenmiş nanoselüloz esaslı adsorbanlar. ACUJFF. 2021;22(1):148-60.
Creative Commons License
Artvin Coruh University Journal of Forestry Faculty is licensed under a Creative Commons Attribution 4.0 International License.