Review
BibTex RIS Cite

Yapay Zekâ’nın Yaratıcılığı Üzerine Bir Tartışma

Year 2024, Volume: 30 Issue: 53, 240 - 252, 31.10.2024
https://doi.org/10.32547/artvision.1454216

Abstract

Yapay Zeka (AI), insan zekasını taklit eden doğası nedeniyle son on yılda en büyüleyici ve tartışılan teknolojidir. Yapay zeka, basitçe insan benzeri duyuya (algılamaya), analize veya anlamaya ve yanıt vermeye sahip makineler inşa etme çalışması anlamına gelmektedir. Yapay zeka sistemleri, aldığı komutlarla belirli bir tür işi yapma kapasitesine sahiptir. Yapay zekanın yolculuğu 1950'li yıllarda başlamış olsa da, üç nedenden dolayı son yıllarda popüler hale gelmiş ve kullanılmaya başlanmıştır. Birincisi, büyük verinin mevcudiyeti; e-ticaret, sosyal ağlar ve işletmeler tarafından üretilen devasa miktarda veri, ikincisi makine öğrenimi algoritmalarının geliştirilmesi ve daha güvenilir olması, üçüncüsü ise bulut ve yüksek performanslı bilgisayar sistemlerinin ucuzlamasıdır. Yapay zeka her yeni günde bir çok alanda işlevsel bir halde kullanılmaktadır. Müzik çalmaktan satranç oynamaya, resim yapmaktan sürücüsüz arabalara, teoremleri kanıtlamaktan şiir yazmaya kadar genelden özele kadar çok çeşitli ürünler geliştirmek için kullanılmaya başlanmıştır. Ayrıca yapay zeka, otomobil, ulaşım, lojistik, sağlık, hisse senedi ticareti, robotik, finans, eğitim gibi alanlarda yaygın olarak kullanılmaktadır. Bu araştırmada henüz insan bilincine ve yaratıcı düşünceye sahip olamayan yapay zekanın plastik sanatlarda gelecekte bir sanatçı mı olacağı? yoksa sanatçı için sadece bir araç olarak mı kalacağı irdelenmeye çalışılmıştır. Ayrıca yapay zekanın makine öğrenimi ve derin öğrenmeyle ilişkisinin tanımlanması yapılarak, yapay zekanın yaratıcılık boyutunun ele alınmasının yanı sıra günümüz sanat dünyasındaki avantajlarına ve zorluklarına ilişkin örnekler üzerinden bir değerlendirme yapılması amaçlanmıştır.

Ethical Statement

Bu çalışmada insanlar üzerine bir çalışma yapılmadığı için etik kurul belgesi alınmasına gerek olmadığı için alınmamıştır.

Supporting Institution

Destekleyen bir kurum veya kuruluş bulunmamaktadır.

References

  • Aggarwal, A., Mittal, M., & Battineni, G. (2021). Generative adversarial network: An overview of theory and applications. International Journal of Information Management Data Insights, 1(1), 1-9. https://doi.org/10.1016/j.jjimei.2020. 100004
  • Aslan, E. (2019). Yapay zekâ resimleri ve sanatın başkalaşan mecrası üzerine. Atatürk Üniversitesi Güzel Sanatlar Enstitüsü Dergisi. 42, 231-242. https://doi.org/10.32547/ataunigsed. 516382
  • Bailey, J. (2019, February 6). AI artist Robbie Barrat and painter Ronan Barrot collaborate on “infinite skulls”. Artnome. https://tinyurl.com/2j95xd7m
  • Barreau, P. (2018, April). How AI could compose a personalized soundtrack to your life [Video]. Ted Conferences. https://www.ted.com/talks/pierre_barreau_how_ai_could_compose_a_personalized_soundtrack_to_your_life?language=en
  • Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: State of the art and future research directions. International Journal of Production Research. 57(7), 2179–2202. https://doi.org/ 10.1080/00207543.2018.1530476
  • Bayraklı, D. (2023, Haziran 26). Yapay zekâ ve sanatın geleceği. Edebifikir. https://edebifikir.com/fikir/yapay-zeka-ve-sanatin-gelecegi.html
  • Boden, M. A. (2004). The creative mind: Myths and mechanisms. Psychology Press.
  • Bose, B. K. (2017). Artificial intelligence techniques in smart grid and renewable energy systems-some example applications, Proceedings of the IEEE, 105(11), 2262–2273. https://doi.org/ 10.1109/JPROC.2017.2756596
  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review.
  • Çakıcıoğlu İlhan, F. (2021). Üretken sanat eserlerinde otonom sistemlerin kullanımı. Ulakbilge, 64(2021 Eylül), 1203–1210. https://doi.org/10.7816/ulakbilge-09-64-07
  • Castells, M. (2005). Enformasyon çağı: Ekonomi, toplum ve kültür, Cilt1: Ağ toplumunun yükselişi. (E. Kılıç, Çev.). İstanbul Bilgi Üniversitesi Yayınları.
  • CBC Radio. (2019, April 5). Artist shares credit with AI 'collaborator'. https://www.cbc.ca/radio/spark/spark-433-1.5081993/artist-shares-credit-with-ai-collaborator-1.5081999
  • Cetinic, E., & She, J. (2021). Understanding and creating art with AI: Review and outlook. arXiv, 1-17. https://doi.org/10.48550/ arXiv.2102.09109
  • Chen, X. W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525. https://doi.org/ 10.1109/ACCESS.2014.2325029
  • Cheng, M. (2022). The creativity of artificial ıntelligence in art. Proceedings of The 2021 Summit of the International Society for the Study of Information, USA, 81(1), 110-114. https://doi.org/ 10.3390/proceedings2022081110
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). IEEE. https://doi.org/10.1109/CVPR.2017.195
  • Cohen, H. (2010). Driving the creative machine. Crossroads Lecture Series. Orcas Center.
  • Cohen, H. (2022, 14 October-19 November). The aaron retrospective [Exhibition]. Gazlli Art House, London, England. https://gazelliarthouse.com/exhibitions/159-the-aaron-retros pective-harold-cohen/
  • Collins, G. S., & Moons, K. G. M. (2019). Reporting of artificial intelligence prediction models. The Lancet, 393(10181), 1577-1579. https://doi.org/10.1016/S0140-6736(19)30037-6
  • Dase, R. K., & Pawar, D. D. (2010). Application of artificial neural network for stock market predictions: A review of literature. International Journal of Machine Intelligence, 2(2), 14-17. https://doi.org/10.9735/0975-2927.2.2.14-17
  • Duan, L., & Xu, L. (2012). Business ıntelligence for enterprise systems: A survey. IEEE Transactions on Industrial Informatics. 8(3) 679–687. https://doi.org/10.1109/TII.2012. 2188804
  • Duan, L., Xu, L., Liu, Y., & Lee, J. (2009). Cluster-based outlier detection. Annals of Opererations Research, 168(1) 151–168. https://doi.org/10.1007/s10479-008-0371-9
  • Foucault, M. (1992). What is an author? In J. L. Marsh, & J. D. Caputo (Eds.), Modernity and its discontents (1st ed., pp. 299-314). Fordham University Press.
  • Galanter, P. (2001). Foundations of generative art systems-A hybrid survey and studio class for graduate students [Conference presentation]. Generative Art: Proceedings of the 4th International Conference, Milan, Italy. https://papers. cumincad.org/data/works/att/ga0125.content.pdf
  • Huang, B., Huan, Y., Xu, L., Zheng, L., & Zou, Z. (2019). Automated trading systems statistical and machine learning methods and hardware implementation: A survey, Enterprise Information Systems, 13(1), 132–144. https://doi.org/10.1080/17517575. 2018.1493145
  • Kurt, D. E. (2018). Artistic creativity in artificial ıntelligence (Publication No. 5ae1a7fabbba3) [Master dissertation, Radboud University]. Faculteit der Letteren.
  • Liu, M. Y., & Tuzel, O. (2016). Coupled generative adversarial networks. Computer Science-Computer Vision and Pattern Recognition, 1-32. https://doi.org/10.48550/arXiv.1606.07536
  • Lu, Y. (2019). Artificial intelligence: A survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1), 1–29. https://doi.org/10.1080/23270012.2019. 1570365
  • Lu, Y., & Xu, L. D. (2018). Internet of things (IoT) cybersecurity research: A review of current research topics. IEEE Internet Things Journal. 6(2), 2103–2115. https://doi.org/10.1109/ JIOT.2018.2869847
  • Makkar A., Garg, S., Kumar, N., Hossain, M. S., Ghoneim, A., & Alrashoud, M. (2020). An efficient spam detection technique for Iot devices using machine learning. IEEE Transactions on Industrial Informatics, 17(2), 903–912. https://doi.org/ 10.1109/TII.2020.2968927
  • McCorduck, P. (1991). Meta-art, artificial Intelligence and the work of Harold Cohen. W. H. Freeman & Co.
  • Mondal, B. (2020). Artificial intelligence: State of the art. In V. Balas, R. Kumar, & R. Srivastava (Eds.), Recent trends and advances in artificial intelligence and internet of things (pp. 389-425). Springer. https://doi.org/10.1007/978-3-030-32644-9_32
  • Moura, L. (2018). Robot art: An interview with Leonel Moura. Arts, 7(3), 28-32. https://doi.org/10.3390/arts7030028
  • Najafabadi, M. M., Villanustre, F., Khoshgoftaar T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7
  • Nilsson, N. J. (2014). Principles of artificial intelligence. Morgan Kaufmann.
  • Paksın, B. (2020). Görsel sanatlarda yapay zekâ ve yaratıcılık ilişkisi (Tez No. 635352) [Yüksek lisans tezi, Dokuz Eylül Üniversitesi]. YÖK Tez Merkezi.
  • Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., & Sundberg, P. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 1–10. https://doi.org/ 10.1038/s41746-018-0029-1
  • Regan, M. (2018). Generative adversarial networks & the art market (Publication No. 13809393) [Doctoral dissertation, State University of New York]. ProQuest Dissertations & Theses Global.
  • Sawyer, R. K. (2014). Explaining creativity: The science of human ınnovation. Oxford University Press.
  • Seyf, T. (2023, Nisan 27). Yapay zekâ ve bilinmeyen dünyası. Independent Türkçe. https://www.indyturk.com/node/627486 /d%C3%BCnyadan-sesler/yapay-zeka-ve-bilinmeyen-d%C3%BC nyas%C4%B1
  • Shi, Z., Huang, Y., He, Q., Xu, L., Liu, S., Qin, L., Jia, Z., Li, J., Huang, H., & Zhao, L. (2007). MSMiner-a developing platform for OLAP. Decision Support Systems, 42(4), 2016–2028. https://doi.org/10.1016/j.dss.2004.11.006
  • Vincent, J. (2018, October 23). How three French students used borrowed code to put the first ai portrait in Christie’s. The Verge. https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
  • Xu, L. (2013). Introduction: Systems science in industrial sectors. Systems Research and Behavioral Science, 30(3), 211–213. https://doi.org/10.1002/sres.2186
  • Xu, L., Tan, W., Zhen, H., & Shen, W. (2008). An approach to enterprise process dynamic modeling supporting enterprise process evolution. Information Systems Frontiers, 10(5), 611–624. https://doi.org/10.1007/s10796-008-9114-3
  • Yang, B., Li, L. X., Ji, H., & Xu, J. (2001). An early warning system for loan risk assessment using artificial neural networks. Knowledge-Based Systems, 14(5–6), 303–306. https://doi.org/ 10.1016/S0950-7051(01)00110-1
  • Zhang, C. (2019). Research on the fluctuation and factors of China TFP of IT Industry. Journal of Industrial Integration and Management, 04(04). https://doi.org/10.1142/S24248622195 00131
  • Zhang, C. M., & Chu, H. N. (2020). Preprocessing method of structured big data in human resource archives database. In 2020 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI) (pp. 379–384). IEEE. https://doi.org/10.1109/IAAI51705.2020.9332880
  • Zhang, C., & Chen, Y. (2020). A review of research relevant to the emerging ındustry trends: Industry 4.0, IoT, Blockchain, and Business Analytics. Journal of Industrial Integration and Management, 01(05), 165-180. https://doi.org/10.1142/S2424 862219500192
  • Zhang, C., & Fu, W. (2021). Optimal model for patrols of UAVs in power grid under time constraints. International Journal of Performability Engineering, 17(1), 103–113. https://doi.org/ 10.23940/ijpe.21.01.p10.103113
  • Zhang, C., Patras, P., & Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 21(3), 2224–2287. https://doi.org/ 10.1109/COMST.2019.2904897
  • Zhang, L., Wang, S., & Liu, B. (2017). Deep learning for sentiment analysis: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), 1-25. https://doi.org/10.1002/widm.1253

A Discussion on The Creativity of Artificial Intelligence

Year 2024, Volume: 30 Issue: 53, 240 - 252, 31.10.2024
https://doi.org/10.32547/artvision.1454216

Abstract

References

  • Aggarwal, A., Mittal, M., & Battineni, G. (2021). Generative adversarial network: An overview of theory and applications. International Journal of Information Management Data Insights, 1(1), 1-9. https://doi.org/10.1016/j.jjimei.2020. 100004
  • Aslan, E. (2019). Yapay zekâ resimleri ve sanatın başkalaşan mecrası üzerine. Atatürk Üniversitesi Güzel Sanatlar Enstitüsü Dergisi. 42, 231-242. https://doi.org/10.32547/ataunigsed. 516382
  • Bailey, J. (2019, February 6). AI artist Robbie Barrat and painter Ronan Barrot collaborate on “infinite skulls”. Artnome. https://tinyurl.com/2j95xd7m
  • Barreau, P. (2018, April). How AI could compose a personalized soundtrack to your life [Video]. Ted Conferences. https://www.ted.com/talks/pierre_barreau_how_ai_could_compose_a_personalized_soundtrack_to_your_life?language=en
  • Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artificial intelligence: State of the art and future research directions. International Journal of Production Research. 57(7), 2179–2202. https://doi.org/ 10.1080/00207543.2018.1530476
  • Bayraklı, D. (2023, Haziran 26). Yapay zekâ ve sanatın geleceği. Edebifikir. https://edebifikir.com/fikir/yapay-zeka-ve-sanatin-gelecegi.html
  • Boden, M. A. (2004). The creative mind: Myths and mechanisms. Psychology Press.
  • Bose, B. K. (2017). Artificial intelligence techniques in smart grid and renewable energy systems-some example applications, Proceedings of the IEEE, 105(11), 2262–2273. https://doi.org/ 10.1109/JPROC.2017.2756596
  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review.
  • Çakıcıoğlu İlhan, F. (2021). Üretken sanat eserlerinde otonom sistemlerin kullanımı. Ulakbilge, 64(2021 Eylül), 1203–1210. https://doi.org/10.7816/ulakbilge-09-64-07
  • Castells, M. (2005). Enformasyon çağı: Ekonomi, toplum ve kültür, Cilt1: Ağ toplumunun yükselişi. (E. Kılıç, Çev.). İstanbul Bilgi Üniversitesi Yayınları.
  • CBC Radio. (2019, April 5). Artist shares credit with AI 'collaborator'. https://www.cbc.ca/radio/spark/spark-433-1.5081993/artist-shares-credit-with-ai-collaborator-1.5081999
  • Cetinic, E., & She, J. (2021). Understanding and creating art with AI: Review and outlook. arXiv, 1-17. https://doi.org/10.48550/ arXiv.2102.09109
  • Chen, X. W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525. https://doi.org/ 10.1109/ACCESS.2014.2325029
  • Cheng, M. (2022). The creativity of artificial ıntelligence in art. Proceedings of The 2021 Summit of the International Society for the Study of Information, USA, 81(1), 110-114. https://doi.org/ 10.3390/proceedings2022081110
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). IEEE. https://doi.org/10.1109/CVPR.2017.195
  • Cohen, H. (2010). Driving the creative machine. Crossroads Lecture Series. Orcas Center.
  • Cohen, H. (2022, 14 October-19 November). The aaron retrospective [Exhibition]. Gazlli Art House, London, England. https://gazelliarthouse.com/exhibitions/159-the-aaron-retros pective-harold-cohen/
  • Collins, G. S., & Moons, K. G. M. (2019). Reporting of artificial intelligence prediction models. The Lancet, 393(10181), 1577-1579. https://doi.org/10.1016/S0140-6736(19)30037-6
  • Dase, R. K., & Pawar, D. D. (2010). Application of artificial neural network for stock market predictions: A review of literature. International Journal of Machine Intelligence, 2(2), 14-17. https://doi.org/10.9735/0975-2927.2.2.14-17
  • Duan, L., & Xu, L. (2012). Business ıntelligence for enterprise systems: A survey. IEEE Transactions on Industrial Informatics. 8(3) 679–687. https://doi.org/10.1109/TII.2012. 2188804
  • Duan, L., Xu, L., Liu, Y., & Lee, J. (2009). Cluster-based outlier detection. Annals of Opererations Research, 168(1) 151–168. https://doi.org/10.1007/s10479-008-0371-9
  • Foucault, M. (1992). What is an author? In J. L. Marsh, & J. D. Caputo (Eds.), Modernity and its discontents (1st ed., pp. 299-314). Fordham University Press.
  • Galanter, P. (2001). Foundations of generative art systems-A hybrid survey and studio class for graduate students [Conference presentation]. Generative Art: Proceedings of the 4th International Conference, Milan, Italy. https://papers. cumincad.org/data/works/att/ga0125.content.pdf
  • Huang, B., Huan, Y., Xu, L., Zheng, L., & Zou, Z. (2019). Automated trading systems statistical and machine learning methods and hardware implementation: A survey, Enterprise Information Systems, 13(1), 132–144. https://doi.org/10.1080/17517575. 2018.1493145
  • Kurt, D. E. (2018). Artistic creativity in artificial ıntelligence (Publication No. 5ae1a7fabbba3) [Master dissertation, Radboud University]. Faculteit der Letteren.
  • Liu, M. Y., & Tuzel, O. (2016). Coupled generative adversarial networks. Computer Science-Computer Vision and Pattern Recognition, 1-32. https://doi.org/10.48550/arXiv.1606.07536
  • Lu, Y. (2019). Artificial intelligence: A survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1), 1–29. https://doi.org/10.1080/23270012.2019. 1570365
  • Lu, Y., & Xu, L. D. (2018). Internet of things (IoT) cybersecurity research: A review of current research topics. IEEE Internet Things Journal. 6(2), 2103–2115. https://doi.org/10.1109/ JIOT.2018.2869847
  • Makkar A., Garg, S., Kumar, N., Hossain, M. S., Ghoneim, A., & Alrashoud, M. (2020). An efficient spam detection technique for Iot devices using machine learning. IEEE Transactions on Industrial Informatics, 17(2), 903–912. https://doi.org/ 10.1109/TII.2020.2968927
  • McCorduck, P. (1991). Meta-art, artificial Intelligence and the work of Harold Cohen. W. H. Freeman & Co.
  • Mondal, B. (2020). Artificial intelligence: State of the art. In V. Balas, R. Kumar, & R. Srivastava (Eds.), Recent trends and advances in artificial intelligence and internet of things (pp. 389-425). Springer. https://doi.org/10.1007/978-3-030-32644-9_32
  • Moura, L. (2018). Robot art: An interview with Leonel Moura. Arts, 7(3), 28-32. https://doi.org/10.3390/arts7030028
  • Najafabadi, M. M., Villanustre, F., Khoshgoftaar T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1–21. https://doi.org/10.1186/s40537-014-0007-7
  • Nilsson, N. J. (2014). Principles of artificial intelligence. Morgan Kaufmann.
  • Paksın, B. (2020). Görsel sanatlarda yapay zekâ ve yaratıcılık ilişkisi (Tez No. 635352) [Yüksek lisans tezi, Dokuz Eylül Üniversitesi]. YÖK Tez Merkezi.
  • Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., Liu, P. J., Liu, X., Marcus, J., Sun, M., & Sundberg, P. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 1–10. https://doi.org/ 10.1038/s41746-018-0029-1
  • Regan, M. (2018). Generative adversarial networks & the art market (Publication No. 13809393) [Doctoral dissertation, State University of New York]. ProQuest Dissertations & Theses Global.
  • Sawyer, R. K. (2014). Explaining creativity: The science of human ınnovation. Oxford University Press.
  • Seyf, T. (2023, Nisan 27). Yapay zekâ ve bilinmeyen dünyası. Independent Türkçe. https://www.indyturk.com/node/627486 /d%C3%BCnyadan-sesler/yapay-zeka-ve-bilinmeyen-d%C3%BC nyas%C4%B1
  • Shi, Z., Huang, Y., He, Q., Xu, L., Liu, S., Qin, L., Jia, Z., Li, J., Huang, H., & Zhao, L. (2007). MSMiner-a developing platform for OLAP. Decision Support Systems, 42(4), 2016–2028. https://doi.org/10.1016/j.dss.2004.11.006
  • Vincent, J. (2018, October 23). How three French students used borrowed code to put the first ai portrait in Christie’s. The Verge. https://www.theverge.com/2018/10/23/18013190/ai-art-portrait-auction-christies-belamy-obvious-robbie-barrat-gans
  • Xu, L. (2013). Introduction: Systems science in industrial sectors. Systems Research and Behavioral Science, 30(3), 211–213. https://doi.org/10.1002/sres.2186
  • Xu, L., Tan, W., Zhen, H., & Shen, W. (2008). An approach to enterprise process dynamic modeling supporting enterprise process evolution. Information Systems Frontiers, 10(5), 611–624. https://doi.org/10.1007/s10796-008-9114-3
  • Yang, B., Li, L. X., Ji, H., & Xu, J. (2001). An early warning system for loan risk assessment using artificial neural networks. Knowledge-Based Systems, 14(5–6), 303–306. https://doi.org/ 10.1016/S0950-7051(01)00110-1
  • Zhang, C. (2019). Research on the fluctuation and factors of China TFP of IT Industry. Journal of Industrial Integration and Management, 04(04). https://doi.org/10.1142/S24248622195 00131
  • Zhang, C. M., & Chu, H. N. (2020). Preprocessing method of structured big data in human resource archives database. In 2020 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI) (pp. 379–384). IEEE. https://doi.org/10.1109/IAAI51705.2020.9332880
  • Zhang, C., & Chen, Y. (2020). A review of research relevant to the emerging ındustry trends: Industry 4.0, IoT, Blockchain, and Business Analytics. Journal of Industrial Integration and Management, 01(05), 165-180. https://doi.org/10.1142/S2424 862219500192
  • Zhang, C., & Fu, W. (2021). Optimal model for patrols of UAVs in power grid under time constraints. International Journal of Performability Engineering, 17(1), 103–113. https://doi.org/ 10.23940/ijpe.21.01.p10.103113
  • Zhang, C., Patras, P., & Haddadi, H. (2019). Deep learning in mobile and wireless networking: A survey. IEEE Communications Surveys & Tutorials, 21(3), 2224–2287. https://doi.org/ 10.1109/COMST.2019.2904897
  • Zhang, L., Wang, S., & Liu, B. (2017). Deep learning for sentiment analysis: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), 1-25. https://doi.org/10.1002/widm.1253
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Fine Arts Education, Fine Arts, Painting
Journal Section Reviews
Authors

Sehran Dilmaç 0000-0003-4934-6048

Publication Date October 31, 2024
Submission Date March 17, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2024 Volume: 30 Issue: 53

Cite

APA Dilmaç, S. (2024). Yapay Zekâ’nın Yaratıcılığı Üzerine Bir Tartışma. Art Vision, 30(53), 240-252. https://doi.org/10.32547/artvision.1454216