Alp Kayağı Antrenmanlarının Oksidatif Stres ve Antioksidan Düzeylerine Etkisi
Year 2024,
Volume: 7 Issue: 3, 541 - 551, 28.09.2024
Duran Demiryürek
,
Metin Polat
,
Inayet Gunturk
,
Cevat Yazıcı
Abstract
Bu çalışmada alp kayakçılarının rutin olarak gerçekleştirdikleri tek bir birim slalom ve büyük slalom antrenmanları süresince oluşabilecek olan oksidan ve antioksidan seviyelerinin total oksidan seviye (TOS) ve total antioksidan seviye (TAS) ölçümleri ile incelenmesi planlandı. Çalışmaya, uluslararası alp disiplini yarışmaları deneyimine sahip, 18-29 yaş aralığında 18 erkek sporcu gönüllü olarak katıldı. İlk olarak gönüllülerin vücut ağırlığı, boy uzunluğu, beden kitle indeksi ve MaxVO2 değerleri tespit edildi. Daha sonra, gönüllülere uluslararası standartlara uygun olan yarışma pistinde, beş gün arayla 2.5 saat süren büyük slalom ve slalom antrenmanları uygulandı. Her iki antrenman uygulaması öncesinde ve sonrasında gönüllülerden venöz kan örnekleri alınarak TOS ve TAS değerleri tespit edildi. Hem slalom hem de büyük slalom sonrasında TOS değerlerinde anlamlı bir değişim gözlenmezken, TAS değerlerinde anlamlı bir artış tespit edildi (p<0.05). TAS değerlerinde anlamlı bir artış gözlenmesine rağmen TOS değerlerinde anlamlı bir artış gözlenmemesinin nedeni, artış gösteren antioksidan enzimlerin oksidan enzimlerdeki artışı baskılaması olabilir. Ayrıca, alp kayağı yarışma ve antrenman yüklenmelerinin hem kısa süreli olması hem de maksimal şiddetten ziyade orta ve yüksek şiddette gerçekleşmesi, antioksidan sistemin oksidan sisteme oranla daha fazla aktive olmasına neden olmuş olabilir.
Ethical Statement
Araştırmaya başlamadan önce Erciyes Üniversitesi Klinik Araştırmalar Etik Kurulundan 20.01.2017 tarih ve 2017/32 kararı ile onay alındı. Mevcut araştırma süresince “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” çerçevesinde hareket edildi.
Supporting Institution
Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi
Project Number
TYL-2017- 7493
Thanks
Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimine araştırmaya sağlamış oldukları destekten dolayı teşekkür ederiz.
References
- Banerjee, A. K., Mandal, A., Chanda, D., & Chakraborti, S. (2003). Oxidant, antioxidant and physical exercise. Molecular and Cellular Biochemistry, 253(1-2), 307–312. https://doi.org/10.1023/a:1026032404105
- Chao, W. H., Askew, E. W., Roberts, D. E., Wood, S. M., & Perkins, J. B. (1999). Oxidative stress in humans during work at moderate altitude. The Journal of Nutrition, 129(11), 2009–2012. https://doi.org/10.1093/jn/129.11.2009
- Ferguson R. A. (2010). Limitations to performance during alpine skiing. Experimental Physiology, 95(3), 404–410. https://doi.org/10.1113/expphysiol.2009.047563
- Ghiselli, A., Serafini, M., Natella, F., & Scaccini, C. (2000). Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology & Medicine, 29(11), 1106–1114. https://doi.org/10.1016/s0891-5849(00)00394-4
- Halliwell B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073
- Howley, E. T., Bassett, D. R., Jr, & Welch, H. G. (1995). Criteria for maximal oxygen uptake: review and commentary. Medicine and Science in Sports and Exercise, 27(9), 1292–1301.
- Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced
Pathologies. International journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
- Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7
- Li, X., Zhang, J., Liu, G., Wu, G., Wang, R., & Zhang, J. (2024). High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers. Life Sciences, 336, 122319. https://doi.org/10.1016/j.lfs.2023.122319
- Maritim, A. C., Sanders, R. A., & Watkins, J. B. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology, 17(1), 24–38. https://doi.org/10.1002/jbt.10058
- Mastaloudis, A., Leonard, S. W., & Traber, M. G. (2001). Oxidative stress in athletes during extreme endurance exercise. Free Radical Biology & Medicine, 31(7), 911–922. https://doi.org/10.1016/s0891-5849(01)00667-0
- Meng, Q., & Su, C. H. (2024). The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants (Basel, Switzerland), 13(5), 573. https://doi.org/10.3390/antiox13050573
- Netzer, N., Gatterer, H., Faulhaber, M., Burtscher, M., Pramsohler, S., & Pesta, D. (2015). Hypoxia, Oxidative Stress and Fat. Biomolecules, 5(2), 1143–1150. https://doi.org/10.3390/biom5021143
- Polat M. (2016). An examination of respiratory and metabolic demands of alpine skiing. Journal of Exercise Science and Fitness, 14(2), 76–81. https://doi.org/10.1016/j.jesf.2016.10.001
- Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
- Powers, S. K., Radak, Z., & Ji, L. L. (2016). Exercise-induced oxidative stress: past, present and future. The Journal of Physiology, 594(18), 5081–5092. https://doi.org/10.1113/JP270646
- Radák, Z., Sasvári, M., Nyakas, C., Pucsok, J., Nakamoto, H., & Goto, S. (2000). Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Archives of Biochemistry and Biophysics, 376(2), 248–251. https://doi.org/10.1006/abbi.2000.1719
- Schippinger, G., Fankhauser, F., Abuja, P. M., Winklhofer-Roob, B. M., Nadlinger, K., Halwachs-Baumann, G., &
Wonisch, W. (2009). Competitive and seasonal oxidative stress in elite alpine ski racers. Scandinavian Journal of Medicine & Science in Sports, 19(2), 206–212. https://doi.org/10.1111/j.1600-0838.2007.00763.x
- Sejersted, O. M., Hargens, A. R., Kardel, K. R., Blom, P., Jensen, O., & Hermansen, L. (1984). Intramuscular fluid pressure during isometric contraction of human skeletal muscle. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 56(2), 287–295. https://doi.org/10.1152/jappl.1984.56.2.287
- Sjøgaard, G., Savard, G., & Juel, C. (1988). Muscle blood flow during isometric activity and its relation to muscle fatigue. European Journal of Applied Physiology and Occupational Physiology, 57(3), 327–335.
https://doi.org/10.1007/BF00635992
- Spirk S., Steiner G., Tschakert G., Groeschl W., Schippinger G., Hofmann P. (2012) Oxygen uptake during race-like alpine giant slalom skiing in relation to variables of the human power spectrum. In: Müller E., Lindinger S., Stöggl T., editors. Science and Skiing V. Meyer & Meyer; Oxford, UK.
- Subudhi, A. W., Davis, S. L., Kipp, R. W., & Askew, E. W. (2001). Antioxidant status and oxidative stress in elite alpine ski racers. International Journal of Sport Nutrition and Exercise Metabolism, 11(1), 32–41. https://doi.org/10.1123/ijsnem.11.1.32
- Szmedra, L., Im, J., Nioka, S., Chance, B., & Rundell, K. W. (2001). Hemoglobin/myoglobin oxygen desaturation during Alpine skiing. Medicine and Science in Sports and Exercise, 33(2), 232–236. https://doi.org/10.1097/00005768-200102000-00010
- Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed research international, 2021, 1947928. https://doi.org/10.1155/2021/1947928
- White, A., Estrada, M., Walker, K., Wisnia, P., Filgueira, G., Valdés, F., Araneda, O., Behn, C., & Martínez, R. (2001). Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 128(1), 99–104. https://doi.org/10.1016/s1095-6433(00)00286-5
- Williamson-Reisdorph, C. M., Quindry, T. S., Tiemessen, K. G., Cuddy, J., Hailes, W., Slivka, D., Ruby, B. C., & Quindry, J. C. (2021). Blood oxidative stress and post-exercise recovery are unaffected byhypobaric and hypoxic environments. Journal of sports sciences, 39(12), 1356–1365. https://doi.org/10.1080/02640414.2021.1872960
- Yoshiko, A., Shiozawa, K., Niwa, S., Takahashi, H., Koike, T., Watanabe, K., Katayama, K., & Akima, H. (2024). Association of skeletal muscle oxidative capacity with muscle function, sarcopenia-related exercise performance, and intramuscular adipose tissue in older adults. GeroScience, 46(2), 2715–2727. https://doi.org/10.1007/s11357-023-01043-6
Effects of Alpine Ski Trainings on Oxidative Stress and Antioxidant Levels
Year 2024,
Volume: 7 Issue: 3, 541 - 551, 28.09.2024
Duran Demiryürek
,
Metin Polat
,
Inayet Gunturk
,
Cevat Yazıcı
Abstract
The aim of this study was to examine the oxidant and antioxidant levels that could be observed during a single unit slalom and giant slalom trainings routinely practiced by alpine skiers by measuring the Total Oxidant Capacity (TOC) and Total Antioxidant Capacity (TAC). 18 male athletes, aged between 18 and 29 and experienced in the international alpine ski competitions, participated voluntarily in the study. Initially, body weight, height, body mass index, and VO2max values of the volunteers were determined as required. Next, the volunteers underwent giant slalom and slalom training, lasted 2.5 hours with five days interval, on the competition slope that complies with the international standards. Venous blood samples of the volunteers were collected before and after both training applied and so TOC and TAC values were found out accordingly. While no significant change was observed in TOC values after both slalom and giant slalom applied, a significant increase was detected in TAC values (p<0.05). The reason for not observing any significant increase in TOC values though a significant increase has been detected in TAC values, may be due to the increased antioxidant enzymes which compress any increase in oxidant enzymes. Furthermore, the fact that alpine ski competition and training loads have been both in short-term and occurred at medium and high intensities rather than maximal intensity may have resulted with an antioxidant system which has been more activated than the oxidant system.
Ethical Statement
Prior to starting the present study, the approval required was received from the Clinical Research Ethics Committee of the Erciyes University and during the current research, the "Higher Education Institutions Scientific Research and Publication Ethics Directive" was followed.
Supporting Institution
Scientific Research Projects Coordination Unit of Erciyes University
Project Number
TYL-2017- 7493
Thanks
We would like to thank the Scientific Research Projects Coordination Unit of Erciyes University for their support.
References
- Banerjee, A. K., Mandal, A., Chanda, D., & Chakraborti, S. (2003). Oxidant, antioxidant and physical exercise. Molecular and Cellular Biochemistry, 253(1-2), 307–312. https://doi.org/10.1023/a:1026032404105
- Chao, W. H., Askew, E. W., Roberts, D. E., Wood, S. M., & Perkins, J. B. (1999). Oxidative stress in humans during work at moderate altitude. The Journal of Nutrition, 129(11), 2009–2012. https://doi.org/10.1093/jn/129.11.2009
- Ferguson R. A. (2010). Limitations to performance during alpine skiing. Experimental Physiology, 95(3), 404–410. https://doi.org/10.1113/expphysiol.2009.047563
- Ghiselli, A., Serafini, M., Natella, F., & Scaccini, C. (2000). Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology & Medicine, 29(11), 1106–1114. https://doi.org/10.1016/s0891-5849(00)00394-4
- Halliwell B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141(2), 312–322. https://doi.org/10.1104/pp.106.077073
- Howley, E. T., Bassett, D. R., Jr, & Welch, H. G. (1995). Criteria for maximal oxygen uptake: review and commentary. Medicine and Science in Sports and Exercise, 27(9), 1292–1301.
- Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced
Pathologies. International journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms22094642
- Kalogeris, T., Baines, C. P., Krenz, M., & Korthuis, R. J. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229–317. https://doi.org/10.1016/B978-0-12-394309-5.00006-7
- Li, X., Zhang, J., Liu, G., Wu, G., Wang, R., & Zhang, J. (2024). High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers. Life Sciences, 336, 122319. https://doi.org/10.1016/j.lfs.2023.122319
- Maritim, A. C., Sanders, R. A., & Watkins, J. B. (2003). Diabetes, oxidative stress, and antioxidants: a review. Journal of Biochemical and Molecular Toxicology, 17(1), 24–38. https://doi.org/10.1002/jbt.10058
- Mastaloudis, A., Leonard, S. W., & Traber, M. G. (2001). Oxidative stress in athletes during extreme endurance exercise. Free Radical Biology & Medicine, 31(7), 911–922. https://doi.org/10.1016/s0891-5849(01)00667-0
- Meng, Q., & Su, C. H. (2024). The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants (Basel, Switzerland), 13(5), 573. https://doi.org/10.3390/antiox13050573
- Netzer, N., Gatterer, H., Faulhaber, M., Burtscher, M., Pramsohler, S., & Pesta, D. (2015). Hypoxia, Oxidative Stress and Fat. Biomolecules, 5(2), 1143–1150. https://doi.org/10.3390/biom5021143
- Polat M. (2016). An examination of respiratory and metabolic demands of alpine skiing. Journal of Exercise Science and Fitness, 14(2), 76–81. https://doi.org/10.1016/j.jesf.2016.10.001
- Powers, S. K., Deminice, R., Ozdemir, M., Yoshihara, T., Bomkamp, M. P., & Hyatt, H. (2020). Exercise-induced oxidative stress: Friend or foe?. Journal of Sport and Health Science, 9(5), 415–425. https://doi.org/10.1016/j.jshs.2020.04.001
- Powers, S. K., Radak, Z., & Ji, L. L. (2016). Exercise-induced oxidative stress: past, present and future. The Journal of Physiology, 594(18), 5081–5092. https://doi.org/10.1113/JP270646
- Radák, Z., Sasvári, M., Nyakas, C., Pucsok, J., Nakamoto, H., & Goto, S. (2000). Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Archives of Biochemistry and Biophysics, 376(2), 248–251. https://doi.org/10.1006/abbi.2000.1719
- Schippinger, G., Fankhauser, F., Abuja, P. M., Winklhofer-Roob, B. M., Nadlinger, K., Halwachs-Baumann, G., &
Wonisch, W. (2009). Competitive and seasonal oxidative stress in elite alpine ski racers. Scandinavian Journal of Medicine & Science in Sports, 19(2), 206–212. https://doi.org/10.1111/j.1600-0838.2007.00763.x
- Sejersted, O. M., Hargens, A. R., Kardel, K. R., Blom, P., Jensen, O., & Hermansen, L. (1984). Intramuscular fluid pressure during isometric contraction of human skeletal muscle. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 56(2), 287–295. https://doi.org/10.1152/jappl.1984.56.2.287
- Sjøgaard, G., Savard, G., & Juel, C. (1988). Muscle blood flow during isometric activity and its relation to muscle fatigue. European Journal of Applied Physiology and Occupational Physiology, 57(3), 327–335.
https://doi.org/10.1007/BF00635992
- Spirk S., Steiner G., Tschakert G., Groeschl W., Schippinger G., Hofmann P. (2012) Oxygen uptake during race-like alpine giant slalom skiing in relation to variables of the human power spectrum. In: Müller E., Lindinger S., Stöggl T., editors. Science and Skiing V. Meyer & Meyer; Oxford, UK.
- Subudhi, A. W., Davis, S. L., Kipp, R. W., & Askew, E. W. (2001). Antioxidant status and oxidative stress in elite alpine ski racers. International Journal of Sport Nutrition and Exercise Metabolism, 11(1), 32–41. https://doi.org/10.1123/ijsnem.11.1.32
- Szmedra, L., Im, J., Nioka, S., Chance, B., & Rundell, K. W. (2001). Hemoglobin/myoglobin oxygen desaturation during Alpine skiing. Medicine and Science in Sports and Exercise, 33(2), 232–236. https://doi.org/10.1097/00005768-200102000-00010
- Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. BioMed research international, 2021, 1947928. https://doi.org/10.1155/2021/1947928
- White, A., Estrada, M., Walker, K., Wisnia, P., Filgueira, G., Valdés, F., Araneda, O., Behn, C., & Martínez, R. (2001). Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 128(1), 99–104. https://doi.org/10.1016/s1095-6433(00)00286-5
- Williamson-Reisdorph, C. M., Quindry, T. S., Tiemessen, K. G., Cuddy, J., Hailes, W., Slivka, D., Ruby, B. C., & Quindry, J. C. (2021). Blood oxidative stress and post-exercise recovery are unaffected byhypobaric and hypoxic environments. Journal of sports sciences, 39(12), 1356–1365. https://doi.org/10.1080/02640414.2021.1872960
- Yoshiko, A., Shiozawa, K., Niwa, S., Takahashi, H., Koike, T., Watanabe, K., Katayama, K., & Akima, H. (2024). Association of skeletal muscle oxidative capacity with muscle function, sarcopenia-related exercise performance, and intramuscular adipose tissue in older adults. GeroScience, 46(2), 2715–2727. https://doi.org/10.1007/s11357-023-01043-6