Research Article
BibTex RIS Cite

BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS

Year 2017, , 154 - 160, 03.12.2017
https://doi.org/10.17567/ataunidfd.381325

Abstract



ABSTRACT

 Aim: The purpose of this study is to compare the stress formations of two
different implant designs in augmented maxillary sinuses using the
three-dimensional (3D) finite elements analysis method.  



Material and
Methods:
A 3D model of atrophic posterior maxilla involving
the maxillary sinus was created with computer software by using a computerized
tomography image of a real patient. Similarly, implants in two different
designs, prosthetic superstructures, and graft applied maxillary sinus were
simulated. Four groups were obtained in total with two types of implants
(Ankyos: A, Xive: X) with different designs, and two different scenerarios
including control models (A1 and X1) without maxillary sinuses and maxilla
models with grafted maxillary sinuses (A2 and X2). In these groups, stress
analysis on cortical bone, trabecular bone and graft material were conducted
under the forces close to real masticatory forces. 



Results: Tension-type stresses
in cortical bone as a result of vertical loading, was lower in X Groups. When
control group models were compared with maxillar sinus augmentation (MSA)
models, no significant difference was revealed. In trabecular bone and graft
material, no significant difference was revealed except for the A2 model which
generated lower stresses. Compression-type stresses in cortical bone as a
result of vertical loading, less stress formation was observed in Group A
models. When MSA models were compared, X2 group caused more stress formation.
In control groups the results were similar. In trabecular bone and graft
material, no significant difference was found. Tension-type stresses in
cortical bone as a result of oblique loading, no significant differences were
revealed. In trabecular bone and graft material, in all models, Group A caused
significantly less stress. Compression-type stresses in cortical bone as a
result of oblique loading, significantly less stress formation was measured in
Group A models. When MSA models were compared, the implant in the X2 group led
to more stress formation. In the control groups, the results were similar. In
the tension-type stresses in trabecular bone and graft material, no significant
difference was revealed except for the A2 model which led to less stress. The
stress values formed on the graft material were quite close.  



Conclusion: Implant design with “V” shaped thread (Group X) caused more stress
formation in almost all conditions, except vertical compression stresses caused
by vertical loadings, in comparison to the models with square shaped thread
form implants (Group A).



Keywords: Dental implants; Finite element analysis; Implant design; Sinus floor
augmentation



OGMENTE MAKSİLLER SİNUS BÖLGESİNE UYGULANAN
IKI FARKLI IMPLANT TASARIMININ OLUŞTURDUĞU STRESLERIN BIYOMEKANIK OLARAK
KARŞILAŞTIRILMASI



ÖZ



Amaç: Bu çalışmanın amacı 3 boyutlu (3D) sonlu
elemanlar stres analizi yöntemini kullanarak, posterior maksiller bölgede greft
kullanılarak sinüs tabanı yükseltilmesi yapılmış örneklerde iki farklı implant
tasarımının stres oluşumuna etkilerini karşılaştırmaktır.



Gereç Ve Yöntem: Gerçek bir hastaya ait bilgisayarlı
tomografi görüntüsü kullanılarak maksiller sinüsü de içeren atrofik posterior
maksillanın 3D modeli bilgisayar yazılımları ile oluşturulmuştur. Benzer
şekilde iki farklı tasarımda implant modelleri, protetik üst yapılar ve
maksiller sinüse uygulanmak üzere greft materyali canlandırılmıştır. Farklı
tasarıma sahip iki tip implant (Ankyos: A, Xive: X), maksiller sinüsün ihmal
edildiği kontrol modellerine (A1 ve X1) ve içerisine greft materyali yerleştirilen
sinuse sahip maksilla modellerine yerleştirilerek (A2 ve X2) toplamda 4 grup
elde edilmiştir. Oluşturulan bu gruplarda, teknik olanakların elverdiği ölçüde
gerçek yaşamdaki çiğneme kuvvetlerine benzer kuvvetler altında kortikal,
trabeküler ve greft materyali üzerinde oluşan streslerin analizi yapılmıştır.  



Bulgular: Vertikal kuvvetler karşısında kortikal
kemikte oluşan gerilme stresleri X gruplarında daha düşük bulunmuştur. Kontrol
grupları ile sinus ogmentasyonu (SO) grupları karşılaştırıldığında anlamlı bir
fark oluşmamıştır. Trabekuler kemik ve greft materyalinde daha düşük stress
oluşturan A2 modeli hariç diğer modellerde anlamlı fark oluşmamıştır. Vertikal
kuvvetlere karşı oluşan sıkışma streslerinde, kortikal kemikte A gruplarında
daha düşük stresler ölçülmüştür. SO gruplarında X2 modelinde daha yüksek stress
oluşmuştur. Kontrol gruplarında ise fark gözlenmemiştir. Trabeküler kemik ve
greft materyalinde ise bir fark gözlenmemiştir. Oblik kuvvetler sonucu oluşan
gerilme steslerinde, kortikal kemikte bir fark bulunamamıştır. Trabeküler kemik
ve greft materyalinde ise A grubunda düşük stress değeleri oluşmuştur. Oblik
kuvvetlere karşı oluşan sıkışma tipi streslerde, kortikal kemikte A gruplarında
düşük stresler gözlenmiştir. SO gruplarında X2 modeli daha yüksek stress
oluşturmuştur. Kontrol grupları arasında ise fark bulunamamıştır. Oblik
kuvvetlere karşı oluşan gerilme streslerinde, trabeküler kemik ve greft
materyalinde, daha düşük stresler oluşan A2 modeli haricinde fark
gözlenmemiştir.       



Sonuç: Üçgen yiv tasarımlı implantlara (Grup X)
sahip modellerde, kare yiv tasarımında implantlara (Grup A) sahip modellere
göre, vertikal kuvvetler sonucu oluşan sıkışma stresleri dışında, neredeyse her
koşulda daha fazla stres oluşumu gözlenmiştir.



Anahtar
Kelimeler:
Dental
implant; Implant tasarımı; Sinüs taban yükseltmesi; Sınırlı eleman analizi



References

  • 1. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306-17.
  • 2. Jung UW, Hong JY, Lee JS, Kim CS, Cho KS, Choi SH. A hybrid technique for sinus floor elevation in the severely resorbed posterior maxilla. J Periodontal Implant Sci. 2010;40:76-85.
  • 3. Sahin S, Cehreli MC, Yalcin E. The influence of functional forces on the biomechanics of implant-supported prostheses--a review. J Dent. 2002;30:271-82.
  • 4. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent. 2004;92:523-30.
  • 5. Nelson SJ, Ash MM. Wheeler's Dental Anatomy, Physiology and Occlusion. 9 ed: Saunders; 2009.
  • 6. Huang HL, Fuh LJ, Ko CC, Hsu JT, Chen CC. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2009;24:455-62.
  • 7. Tepper G, Haas R, Zechner W, Krach W, Watzek G. Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla: a mathematical study of the sinus floor augmentation. Clin Oral Implants Res. 2002; 13:657-65.
  • 8. Fanuscu MI, Vu HV, Poncelet B. Implant biomechanics in grafted sinus: a finite element analysis. J Oral Implantol. 2004;30:59-68.
  • 9. Fanuscu MI, Iida K, Caputo AA, Nishimura RD. Load transfer by an implant in a sinus-grafted maxillary model. Int J Oral Maxillofac Implants. 2003;18:667-74.
  • 10. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30:223-33.
  • 11. Geramy A, Morgano SM. Finite element analysis of three designs of an implant-supported molar crown. J Prosthet Dent. 2004;92:434-40.
  • 12. Ramoğlu S, Ozan O. Finite element methods in dentistry. J Dent Fac Atatürk Uni. 2014;Supplement: 9:175-80. 13. Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res. 2014;4:200-3.
  • 14. Szwedowski TD, Whyne CM, Fialkov JA. Toward characterization of craniofacial biomechanics. J Craniofac Surg. 2010;21:202-7.
  • 15. Lundgren S, Rasmusson L, Sjostrom M, Sennerby L. Simultaneous or delayed placement of titanium implants in free autogenous iliac bone grafts. Histological analysis of the bone graft-titanium interface in 10 consecutive patients. Int J Oral Maxillofac Surg. 1999;28:31-7.
  • 16. Tatum H, Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am. 1986;30:207-29.
  • 17. Al-Nawas B, Schiegnitz E. Augmentation procedures using bone substitute materials or autogenous bone - a systematic review and meta-analysis. Eur J Oral Implantol. 2014;7 Suppl 2:S219-34.
  • 18. Akpinar I, Anil N, Parnas L. A natural tooth's stress distribution in occlusion with a dental implant. J Oral Rehabil. 2000;27:538-45.
  • 19. Chowdhary R, Halldin A, Jimbo R, Wennerberg A. Evaluation of stress pattern generated through various thread designs of dental implants loaded in a condition of immediately after placement and on osseointegration--an FEA study. Implant Dent. 2013;22:91-6.
  • 20. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004;31:233-9.
Year 2017, , 154 - 160, 03.12.2017
https://doi.org/10.17567/ataunidfd.381325

Abstract

References

  • 1. Steigenga JT, al-Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003;12:306-17.
  • 2. Jung UW, Hong JY, Lee JS, Kim CS, Cho KS, Choi SH. A hybrid technique for sinus floor elevation in the severely resorbed posterior maxilla. J Periodontal Implant Sci. 2010;40:76-85.
  • 3. Sahin S, Cehreli MC, Yalcin E. The influence of functional forces on the biomechanics of implant-supported prostheses--a review. J Dent. 2002;30:271-82.
  • 4. Bozkaya D, Muftu S, Muftu A. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent. 2004;92:523-30.
  • 5. Nelson SJ, Ash MM. Wheeler's Dental Anatomy, Physiology and Occlusion. 9 ed: Saunders; 2009.
  • 6. Huang HL, Fuh LJ, Ko CC, Hsu JT, Chen CC. Biomechanical effects of a maxillary implant in the augmented sinus: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2009;24:455-62.
  • 7. Tepper G, Haas R, Zechner W, Krach W, Watzek G. Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla: a mathematical study of the sinus floor augmentation. Clin Oral Implants Res. 2002; 13:657-65.
  • 8. Fanuscu MI, Vu HV, Poncelet B. Implant biomechanics in grafted sinus: a finite element analysis. J Oral Implantol. 2004;30:59-68.
  • 9. Fanuscu MI, Iida K, Caputo AA, Nishimura RD. Load transfer by an implant in a sinus-grafted maxillary model. Int J Oral Maxillofac Implants. 2003;18:667-74.
  • 10. Geng JP, Xu DW, Tan KB, Liu GR. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol. 2004;30:223-33.
  • 11. Geramy A, Morgano SM. Finite element analysis of three designs of an implant-supported molar crown. J Prosthet Dent. 2004;92:434-40.
  • 12. Ramoğlu S, Ozan O. Finite element methods in dentistry. J Dent Fac Atatürk Uni. 2014;Supplement: 9:175-80. 13. Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res. 2014;4:200-3.
  • 14. Szwedowski TD, Whyne CM, Fialkov JA. Toward characterization of craniofacial biomechanics. J Craniofac Surg. 2010;21:202-7.
  • 15. Lundgren S, Rasmusson L, Sjostrom M, Sennerby L. Simultaneous or delayed placement of titanium implants in free autogenous iliac bone grafts. Histological analysis of the bone graft-titanium interface in 10 consecutive patients. Int J Oral Maxillofac Surg. 1999;28:31-7.
  • 16. Tatum H, Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am. 1986;30:207-29.
  • 17. Al-Nawas B, Schiegnitz E. Augmentation procedures using bone substitute materials or autogenous bone - a systematic review and meta-analysis. Eur J Oral Implantol. 2014;7 Suppl 2:S219-34.
  • 18. Akpinar I, Anil N, Parnas L. A natural tooth's stress distribution in occlusion with a dental implant. J Oral Rehabil. 2000;27:538-45.
  • 19. Chowdhary R, Halldin A, Jimbo R, Wennerberg A. Evaluation of stress pattern generated through various thread designs of dental implants loaded in a condition of immediately after placement and on osseointegration--an FEA study. Implant Dent. 2013;22:91-6.
  • 20. Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004;31:233-9.
There are 19 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Articles
Authors

Onur Ademhan This is me

Sercan Küçükkurt

Sedat Çetiner This is me

Publication Date December 3, 2017
Published in Issue Year 2017

Cite

APA Ademhan, O., Küçükkurt, S., & Çetiner, S. (2017). BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 27(3), 154-160. https://doi.org/10.17567/ataunidfd.381325
AMA Ademhan O, Küçükkurt S, Çetiner S. BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS. Ata Diş Hek Fak Derg. December 2017;27(3):154-160. doi:10.17567/ataunidfd.381325
Chicago Ademhan, Onur, Sercan Küçükkurt, and Sedat Çetiner. “BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 27, no. 3 (December 2017): 154-60. https://doi.org/10.17567/ataunidfd.381325.
EndNote Ademhan O, Küçükkurt S, Çetiner S (December 1, 2017) BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 27 3 154–160.
IEEE O. Ademhan, S. Küçükkurt, and S. Çetiner, “BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS”, Ata Diş Hek Fak Derg, vol. 27, no. 3, pp. 154–160, 2017, doi: 10.17567/ataunidfd.381325.
ISNAD Ademhan, Onur et al. “BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 27/3 (December 2017), 154-160. https://doi.org/10.17567/ataunidfd.381325.
JAMA Ademhan O, Küçükkurt S, Çetiner S. BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS. Ata Diş Hek Fak Derg. 2017;27:154–160.
MLA Ademhan, Onur et al. “BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 27, no. 3, 2017, pp. 154-60, doi:10.17567/ataunidfd.381325.
Vancouver Ademhan O, Küçükkurt S, Çetiner S. BIOMECHANICAL COMPARISON OF STRESSES GENERATED THROUGH TWO DIFFERENT DENTAL IMPLANT DESIGNS TO BE APPLIED IN AUGMENTED MAXILLARY SINUS. Ata Diş Hek Fak Derg. 2017;27(3):154-60.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.