Research Article
BibTex RIS Cite

FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ

Year 2020, Volume: 30 Issue: 1, 26 - 32, 15.01.2020
https://doi.org/10.17567/ataunidfd.643635

Abstract



Amaç: Bu çalışmanın amacı, direkt veya
indirekt polimerizasyon teknikleri ile polimerize edilmiş farklı kompozit
rezinlerin mikrosertlik, bükülme dayanımı, su emilimi ve çözünürlüklerini
değerlendirmektir.



Materyal ve Metot: Rezin matriksine
göre sınıflandırılan 3 kompozit rezin seçildi: U200 (3M ESPE), Grandio (VOCO),
Xtrafil (VOCO). Kompozit rezinler polimerizasyon tekniğine göre üç alt gruba ayrıldı:
LED (Eliapar, 3M ESPE), LED+ indirekt ışık (DI 500 Coltene) , indirekt
ışık+ısı+basınç (Tescera ATL, Bisco Dental). Her bir alt grup için yedi
dikdörtgen örnek (25mm x 2mm x 2mm) yapıldı ve bükülme dayanım değerleri için
üç nokta büküm testleri yapıldı. Vickers sertliğini, su emme derecesini ve
çözünürlüğünü belirlemek için yedi silindirik örnek (çap: 8mm, kalınlık: 2mm)
yapıldı. Silindirik örnekler 37 ° C'de 24 saat boyunca distile suda saklandı ve
mikrosertlik değerleri bir Vickers sertlik test cihazı ile ölçüldü. Su emilim testi
için hazırlanan örnekler 24 saat aynı koşullarda depolandı ve su emme değerleri
ölçüldü. Aynı örnekler desikatörde sabit kütle elde edilinceye kadar kurutuldu
ve çözünürlük ölçümleri yapıldı. Veriler iki yönlü ANOVA ve Tukey's post-hoc
testi (α = 0.05) ile analiz edildi.



Bulgular: Polimerizasyon teknikleri ile kompozit
rezinler arasındaki etkileşim yalnızca bükülme dayanım değerlerinde anlamlı idi
(p <0.05).Bükülme dayanımı, mikrosertlik ve su absorpsiyonu için en yüksek
değer LED+indirekt ışıkla polimerize edilen örneklerde görüldü.  Çözünürlük için en yüksek değer ise, indirekt
ışık+ısı+basınçla polimerize edilen örneklerde görüldü.



Sonuç: İndirekt polimerizasyon yöntemi
kompozit rezinlerin mikro sertlik ve bükülme dayanımı değerlerini geliştirdi
ancak su emilimi ve çözünürlük değerlerini olumsuz etkiledi.



Anahtar kelimeler: Kompozit rezin,
mekanik özellikler, polimerizasyon tekniği
 



Effect of
different polymerization techniques on mechanical and physical properties of
composite resins



Abstract



Aim: The aim of this study was to evaluate the flexural
strength, microhardness, water sorption and solubility of different composite
resins polymerized with direct and indirect polymerization techniques.



Materials and
Methods:
Three composit resines, classified according to their resin matrix, were
selected:
U200
(3M ESPE), Grandio (VOCO), Xtrafil (VOCO).
Composite
resins were divided into three subgroups according to polymerization technique:
LED
(Eliapar,
3M ESPE)
, LED + indirect light (DI 500 Coltene), indirect
light +heat + pressure

(Tescera ATL, Bisco Dental
). Seven rectangular specimens (25mmx2mmx2mm) of each subgroup were prepared and
3-point bending tests were performed for flexural strength values. To determine
Vickers hardness, water sorption and solubility tests; seven cylindrical
specimens (diameter: 8mm thickness: 2mm) were prepared. The cylindrical
specimens were stored in distilled water for 24 hours at 37C, and
the microhardness values were measured with a Vickers hardness tester. Then,
specimens were stored in the same conditions for 24 hours and water sorption values
were measured. The same specimens were kept in desiccators and dried for
solubility measurements until constant mass was achieved. Data were analyzed by
two-way ANOVA and Tukey's post-hoc test (α=0.05).



Results: The interaction between polymerization techniques and
composite resins was significant only in flexural strength values (p<0.05).
The highest values were obtained for flexural strength, microhardness and water
sorption with indirect light and for solubility with indirect light+heat+pressure.





Keywords: composite resin, mechanical properties,
polymerization technique




polimerizasyon tekniği polimerizasyon tekniği 

References

  • 1. Cobb DS, MacGregor KM, Vargas MA, Denehy GE. The physical properties of packable and conventional posterior resin-based composites: a comparison. Journal of the American Dental Association, 2000, 131: 1610-1615.
  • 2. Bayne SC, Heymann HO, Swift EJ, Jr. Update on dental composite restorations. Journal of the American Dental Association, 1994, 125: 687-701.
  • 3. Braem M, Lambrechts P, Van Doren V, Vanherle G. The impact of composite structure on its elastic response. Journal of Dental Research, 1986, 65: 648-653.
  • 4. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. Journal of Biomedical Materials Research, 2000, 53: 353-361.
  • 5. Poskus LT, Placido E, Cardoso PE. Influence of placement techniques on Vickers and Knoop hardness of class II composite resin restorations. Dental Materials, 2004, 20: 726-732.
  • 6. Cook WD. Factors affecting the depth of cure of UV-polymerized composites. Journal of Dental Research, 1980, 59: 800-808.
  • 7. Sideridou ID, Karabela MM, Bikiaris DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dental Materials, 2007, 23: 1142-1149.
  • 8. Pala K, Tekce N, Tuncer S, Demirci M, Oznurhan F, Serim M. Flexural strength and microhardness of anterior composites after accelerated aging. J Clin Exp Dent, 2017, 9: e424-e430.
  • 9. Alander P, Lassila LV, Tezvergil A, Vallittu PK. Acoustic emission analysis of fiber-reinforced composite in flexural testing. Dental Materials, 2004, 20: 305-312.
  • 10. Lassila LV, Nohrstrom T, Vallittu PK. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials, 2002, 23: 2221-2229.
  • 11. Santos C, Clarke RL, Braden M, Guitian F, Davy KWM. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 2002, 23: 1897-1904.
  • 12. Sindel J, Frankenberger R, Kramer N, Petschelt A. Crack formation of all-ceramic crowns dependent on different core build-up and luting materials. J Dent, 1999, 27: 175-181.
  • 13. Momoi Y, Mccabe JF. Hygroscopic Expansion of Resin-Based Composites during 6 Months of Water Storage. Br Dent J, 1994, 176: 91-96.
  • 14. Ortengren U, Andersson F, Elgh U, Terselius B, Karlsson S. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent, 2001, 29: 35-41.
  • 15. Souza RO, Ozcan M, Michida SM, de Melo RM, Pavanelli CA, Bottino MA, Soares LE, Martin AA. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. J Prosthodont, 2010, 19: 218-225.
  • 16. Dietschi D, Schatz JP. Current restorative modalities for young patients with missing anterior teeth. Quintessence Int, 1997, 28: 231-240.
  • 17. Rouhollahi M, Mohammadibasir M, Talim S. Comparative depth of cure among two light-cured core build-up composites by surface vickers hardness. J Dent (Tehran), 2012, 9: 255-261.
  • 18. ISO 4049. Dentistry – Resin based filling materials. International Organization for Standardisation, Switzerland.
  • 19. de Moraes RR, Marimon JL, Schneider LF, Sinhoreti MA, Correr-Sobrinho L, Bueno M. Effects of 6 months of aging in water on hardness and surface roughness of two microhybrid dental composites. J Prosthodont, 2008, 17: 323-326.
  • 20. Silva KG, Pedrini D, Delbem AC, Cannon M. Microhardness and fluoride release of restorative materials in different storage media. Braz Dent J, 2007, 18: 309-313.
  • 21. Demirel F, Saygılı G, Şahmalı S. Comparative Mechanical Property Characterization of three Indirect Composite Resin Materials Compared With Two Direct Composites. Polym Adw Technol. 2003:14;380-386. .
  • 22. Alves PB, Brandt WC, Neves AC, Cunha LG, Silva-Concilio LR. Mechanical properties of direct and indirect composites after storage for 24 hours and 10 months. Eur J Dent, 2013, 7: 117-122.
  • 23. Say EC, Civelek A, Nobecourt A, Ersoy M, Guleryuz C. Wear and microhardness of different resin composite materials. Operative Dentistry, 2003, 28: 628-634.
  • 24. Chung SM, Yap AU, Chandra SP, Lim CT. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test. J Biomed Mater Res B Appl Biomater, 2004, 71: 278-283.
  • 25. Della Bona A, Benetti P, Borba M, Cecchetti D. Flexural and diametral tensile strength of composite resins. Braz Oral Res, 2008, 22: 84-89.
  • 26. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont, 1995, 8: 239-246.
  • 27. Bayindir F, Yilmaz B. Comparison of diametral tensile, flexural, and compressive strengths of five core build-up materials. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2007, 2007: 18-23.
  • 28. Adabo GL, dos Santos Cruz CA, Fonseca RG, Vaz LG. The volumetric fraction of inorganic particles and the flexural strength of composites for posterior teeth. J Dent, 2003, 31: 353-359.
  • 29. Manhart J, Chen HY, Hickel R. The suitability of packable resin-based composites for posterior restorations. Journal of the American Dental Association, 2001, 132: 639-645.
  • 30. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dental Materials, 1998, 14: 51-56.
  • 31. Xu HH, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM. Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dental Materials, 2000, 16: 248-254.
  • 32. Klymus ME, Shinkai RS, Mota EG, Oshima HM, Spohr AM, Burnett LH. Influence of the mechanical properties of composites for indirect dental restorations on pattern failure. Stomatologija, 2007, 9: 56-60.
  • 33. Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil, 2001, 28: 1106-1115.
  • 34. Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. Journal of Dental Research, 1986, 65: 1315-1318.
  • 35. Kalachandra S, Wilson TW. Water sorption and mechanical properties of light-cured proprietary composite tooth restorative materials. Biomaterials, 1992, 13: 105-109.
  • 36. Mirsasaani SS, Ghomi F, Hemati M, Tavasoli T. Measurement of solubility and water sorption of dental nanocomposites light cured by argon laser. IEEE Trans Nanobioscience, 2013, 12: 41-46.
  • 37. Sevilmiş H, Bulucu B. The water sorption of adhesive materials. Hacettepe Diş Hek Fak Derg 2007;31(2):16-21.
  • 38. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials, 2003, 24: 655-665.
  • 39. Ortengren U, Andersson F, Elgh U, Terselius B, Karlsson S. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent, 2001, 29: 35-41.
  • 40. Chaves LP, Graciano FM, Junior OB, Pedreira AP, Manso AP, Wang L. Water interaction with dental luting cements by means of sorption and solubility. Braz Dent Sci. 2012;15(4):29-35.
Year 2020, Volume: 30 Issue: 1, 26 - 32, 15.01.2020
https://doi.org/10.17567/ataunidfd.643635

Abstract

References

  • 1. Cobb DS, MacGregor KM, Vargas MA, Denehy GE. The physical properties of packable and conventional posterior resin-based composites: a comparison. Journal of the American Dental Association, 2000, 131: 1610-1615.
  • 2. Bayne SC, Heymann HO, Swift EJ, Jr. Update on dental composite restorations. Journal of the American Dental Association, 1994, 125: 687-701.
  • 3. Braem M, Lambrechts P, Van Doren V, Vanherle G. The impact of composite structure on its elastic response. Journal of Dental Research, 1986, 65: 648-653.
  • 4. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties of new composite restorative materials. Journal of Biomedical Materials Research, 2000, 53: 353-361.
  • 5. Poskus LT, Placido E, Cardoso PE. Influence of placement techniques on Vickers and Knoop hardness of class II composite resin restorations. Dental Materials, 2004, 20: 726-732.
  • 6. Cook WD. Factors affecting the depth of cure of UV-polymerized composites. Journal of Dental Research, 1980, 59: 800-808.
  • 7. Sideridou ID, Karabela MM, Bikiaris DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dental Materials, 2007, 23: 1142-1149.
  • 8. Pala K, Tekce N, Tuncer S, Demirci M, Oznurhan F, Serim M. Flexural strength and microhardness of anterior composites after accelerated aging. J Clin Exp Dent, 2017, 9: e424-e430.
  • 9. Alander P, Lassila LV, Tezvergil A, Vallittu PK. Acoustic emission analysis of fiber-reinforced composite in flexural testing. Dental Materials, 2004, 20: 305-312.
  • 10. Lassila LV, Nohrstrom T, Vallittu PK. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials, 2002, 23: 2221-2229.
  • 11. Santos C, Clarke RL, Braden M, Guitian F, Davy KWM. Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials, 2002, 23: 1897-1904.
  • 12. Sindel J, Frankenberger R, Kramer N, Petschelt A. Crack formation of all-ceramic crowns dependent on different core build-up and luting materials. J Dent, 1999, 27: 175-181.
  • 13. Momoi Y, Mccabe JF. Hygroscopic Expansion of Resin-Based Composites during 6 Months of Water Storage. Br Dent J, 1994, 176: 91-96.
  • 14. Ortengren U, Andersson F, Elgh U, Terselius B, Karlsson S. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent, 2001, 29: 35-41.
  • 15. Souza RO, Ozcan M, Michida SM, de Melo RM, Pavanelli CA, Bottino MA, Soares LE, Martin AA. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. J Prosthodont, 2010, 19: 218-225.
  • 16. Dietschi D, Schatz JP. Current restorative modalities for young patients with missing anterior teeth. Quintessence Int, 1997, 28: 231-240.
  • 17. Rouhollahi M, Mohammadibasir M, Talim S. Comparative depth of cure among two light-cured core build-up composites by surface vickers hardness. J Dent (Tehran), 2012, 9: 255-261.
  • 18. ISO 4049. Dentistry – Resin based filling materials. International Organization for Standardisation, Switzerland.
  • 19. de Moraes RR, Marimon JL, Schneider LF, Sinhoreti MA, Correr-Sobrinho L, Bueno M. Effects of 6 months of aging in water on hardness and surface roughness of two microhybrid dental composites. J Prosthodont, 2008, 17: 323-326.
  • 20. Silva KG, Pedrini D, Delbem AC, Cannon M. Microhardness and fluoride release of restorative materials in different storage media. Braz Dent J, 2007, 18: 309-313.
  • 21. Demirel F, Saygılı G, Şahmalı S. Comparative Mechanical Property Characterization of three Indirect Composite Resin Materials Compared With Two Direct Composites. Polym Adw Technol. 2003:14;380-386. .
  • 22. Alves PB, Brandt WC, Neves AC, Cunha LG, Silva-Concilio LR. Mechanical properties of direct and indirect composites after storage for 24 hours and 10 months. Eur J Dent, 2013, 7: 117-122.
  • 23. Say EC, Civelek A, Nobecourt A, Ersoy M, Guleryuz C. Wear and microhardness of different resin composite materials. Operative Dentistry, 2003, 28: 628-634.
  • 24. Chung SM, Yap AU, Chandra SP, Lim CT. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test. J Biomed Mater Res B Appl Biomater, 2004, 71: 278-283.
  • 25. Della Bona A, Benetti P, Borba M, Cecchetti D. Flexural and diametral tensile strength of composite resins. Braz Oral Res, 2008, 22: 84-89.
  • 26. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont, 1995, 8: 239-246.
  • 27. Bayindir F, Yilmaz B. Comparison of diametral tensile, flexural, and compressive strengths of five core build-up materials. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2007, 2007: 18-23.
  • 28. Adabo GL, dos Santos Cruz CA, Fonseca RG, Vaz LG. The volumetric fraction of inorganic particles and the flexural strength of composites for posterior teeth. J Dent, 2003, 31: 353-359.
  • 29. Manhart J, Chen HY, Hickel R. The suitability of packable resin-based composites for posterior restorations. Journal of the American Dental Association, 2001, 132: 639-645.
  • 30. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dental Materials, 1998, 14: 51-56.
  • 31. Xu HH, Smith DT, Schumacher GE, Eichmiller FC, Antonucci JM. Indentation modulus and hardness of whisker-reinforced heat-cured dental resin composites. Dental Materials, 2000, 16: 248-254.
  • 32. Klymus ME, Shinkai RS, Mota EG, Oshima HM, Spohr AM, Burnett LH. Influence of the mechanical properties of composites for indirect dental restorations on pattern failure. Stomatologija, 2007, 9: 56-60.
  • 33. Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil, 2001, 28: 1106-1115.
  • 34. Oysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. Journal of Dental Research, 1986, 65: 1315-1318.
  • 35. Kalachandra S, Wilson TW. Water sorption and mechanical properties of light-cured proprietary composite tooth restorative materials. Biomaterials, 1992, 13: 105-109.
  • 36. Mirsasaani SS, Ghomi F, Hemati M, Tavasoli T. Measurement of solubility and water sorption of dental nanocomposites light cured by argon laser. IEEE Trans Nanobioscience, 2013, 12: 41-46.
  • 37. Sevilmiş H, Bulucu B. The water sorption of adhesive materials. Hacettepe Diş Hek Fak Derg 2007;31(2):16-21.
  • 38. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials, 2003, 24: 655-665.
  • 39. Ortengren U, Andersson F, Elgh U, Terselius B, Karlsson S. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent, 2001, 29: 35-41.
  • 40. Chaves LP, Graciano FM, Junior OB, Pedreira AP, Manso AP, Wang L. Water interaction with dental luting cements by means of sorption and solubility. Braz Dent Sci. 2012;15(4):29-35.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Merve İşcan Yapar This is me 0000-0002-9712-0978

Neslihan Çelik This is me 0000-0002-7456-5202

Ömer Sağsöz This is me 0000-0002-6506-537X

Buket Karalar This is me 0000-0002-7855-1246

Nilgün Seven This is me 0000-0002-0241-8334

Yusuf Ziya Bayındır This is me 0000-0003-0943-1352

Publication Date January 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 1

Cite

APA İşcan Yapar, M., Çelik, N., Sağsöz, Ö., Karalar, B., et al. (2020). FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(1), 26-32. https://doi.org/10.17567/ataunidfd.643635
AMA İşcan Yapar M, Çelik N, Sağsöz Ö, Karalar B, Seven N, Bayındır YZ. FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ. Ata Diş Hek Fak Derg. January 2020;30(1):26-32. doi:10.17567/ataunidfd.643635
Chicago İşcan Yapar, Merve, Neslihan Çelik, Ömer Sağsöz, Buket Karalar, Nilgün Seven, and Yusuf Ziya Bayındır. “FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 1 (January 2020): 26-32. https://doi.org/10.17567/ataunidfd.643635.
EndNote İşcan Yapar M, Çelik N, Sağsöz Ö, Karalar B, Seven N, Bayındır YZ (January 1, 2020) FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 1 26–32.
IEEE M. İşcan Yapar, N. Çelik, Ö. Sağsöz, B. Karalar, N. Seven, and Y. Z. Bayındır, “FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ”, Ata Diş Hek Fak Derg, vol. 30, no. 1, pp. 26–32, 2020, doi: 10.17567/ataunidfd.643635.
ISNAD İşcan Yapar, Merve et al. “FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/1 (January 2020), 26-32. https://doi.org/10.17567/ataunidfd.643635.
JAMA İşcan Yapar M, Çelik N, Sağsöz Ö, Karalar B, Seven N, Bayındır YZ. FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ. Ata Diş Hek Fak Derg. 2020;30:26–32.
MLA İşcan Yapar, Merve et al. “FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 1, 2020, pp. 26-32, doi:10.17567/ataunidfd.643635.
Vancouver İşcan Yapar M, Çelik N, Sağsöz Ö, Karalar B, Seven N, Bayındır YZ. FARKLI POLİMERİZASYON TEKNİKLERİNİN KOMPOZİT REZİNLERİN MEKANİK VE FİZİKSEL ÖZELLİKLERİNE ETKİSİ. Ata Diş Hek Fak Derg. 2020;30(1):26-32.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.