Review
BibTex RIS Cite

Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı

Year 2020, Volume: 15 Issue: 1, 76 - 83, 30.04.2020
https://doi.org/10.17094/ataunivbd.614120

Abstract

Spermanın kalite analizleri, infertilitenin tanımlanmasında ve yardımcı üreme teknikleri yönünden günümüz bilim dünyasında değer kazanmaya başlamıştır. Bu analizlerde tercih edilen yöntemlerin en gelişmişlerinden biri olan akış sitometrisi, akış halindeki bir süspansiyon içindeki çeşitli boyut ve yapıdaki hücre, nükleus ve benzeri hücre komponentleri, kromozomal yapılar ve çeşitli partikülleri de kapsayan taneciklerin, lazer ve özelleştirilmiş dedektörler yardımıyla nitelik ve nicelik özelliklerinin ölçülmesine dayanan bir yöntemdir. Bu amaçla, florokrom moleküllerle boyanmış örneklere ait partiküllerin tek sıralı hale getirilmesinin ardından optik sistemden saçılan lazer ışınına maruz kalmakta, geri dönen ışınlar ise toplanarak elektronik sinyallere dönüştürülmektedir. Elektronik sinyaller ise yazılımlar ile değerlendirilmektedir. Akış sitometrisinin, geniş kullanım yelpazesi içerisinden, gelişen infertilite teşhis metodları ve yardımcı üreme teknikleri sayesinde ilk olarak beşeri androloji laboratuvarlarında, hemen ardından ise veteriner androloji laboratuvarlarında, spermatozoanın konsantrasyonu; plazma membran ve akrozom bütünlüğü; apoptosis; mitokondriyal membran potansiyeli; kapasitasyon; oksidatif stres; lipid peroksidasyonu; DNA bütünlüğü ve cinsiyetin belirlenmesi vb. amaçlar ile kullanılmaya başlanmıştır. Bu derlemede akış sitometrisi ve analizlerinin sperma kalitesini belirlemedeki rolü ve önemi açıklanarak ilgili sperm kalite parametrelerinin ölçümünde kullanılan protokoller hakkında detaylı bilgilendirme sağlanması hedeflenmiştir. 

References

  • 1. Leeuwenhoek A., 1677. Observationes de Anthonu Lewenhoeck, de natis e semine genitali animalculis. Phil Trans Roy Soc, 12, 1040-1043. 2. Andrade-Rocha FT., 2017. On the origins of the semen analysis: A close relationship with the history of the reproductive medicine. J Hum Reprod Sci, 10, 242. 3. Lode A., 1891. Untersuchungen über die Zahlen-und Regenerationsverhältnisse der Spermatozoiden bei Hund und Mensch. Pflug Arch Eur J Phy, 50, 278-292. 4. Martin E., Carnett JB., Levi JV., Pennington ME., 1902. The surgical treatment of sterility due to obstruction at the epididymis; together with a study of the morphology of human spermatozoa. Univ Pa Med Bull, 15, 2‐15. 5. Detlefsen JA., 1914. Genetic studies on a cavy species cross. Carnegie Instit Wash, 205, 1-134. 6. Hühner M., 1921. Methods of examining for spermatozoa in the diagnosis and treatment of sterility. Int J Surg, 34, 91-100. 7. Zeleny C., Faust EC., 1915. Size dimorphism in the spermatozoa from single testes. J Exp Zool, 18, 187‐240. 8. Williams WW., Savage A., 1925. Observations on the seminal micropathology of bulls. Cornell Vet, 15, 353‐375. 9. Amann RP., Waberski D., 2014. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology, 81, 5-17. 10. van Dilla MA., Gledhill BL., Lake S., Dean PN., Gray JW., Kachel V., Göhde W., 1977. Measurement of mammalian sperm deoxyribonucleic acid by flow cytometry. Problems and approaches. J Histochem Cytochem, 25, 763-773. 11. Rodriguez-Martinez H., 2014. Semen evaluation and handling: emerging techniques and future development. In “Animal Andrology: Theories and Applications” Ed., PJ Chenoweth, 509-549. Reproduction Resources, USA 12. Barlogie B., Raber MN., Schumann J., Johnson TS., Drewinko B., Swartzendruber DE., Göhde W., Andreeff M., Freireich EJ., 1983. Flow cytometry in clinical cancer research. Cancer Res, 43, 3982-3997. 13. Hengel RL., Nicholson JK., 2001. An update on the use of flow cytometry in HIV infection and AIDS. Clin Lab Med, 21, 841-856. 14. Solly F., Angelot‐Delettre F., Ticchioni M., Geneviève F., Rambaud H., Baseggio L., Plesa A., Debliquis A., Garnache‐Ottou F., Roggy A., Campos L., Aanei C., Rosenthal‐Allieri A., Georget M., Lachot S., Jacob M., Robillard N., Wuilleme S., Andre‐Kerneis E., Cornet E., Salaun V., Bennami H., Lhoumeau A., Arnoulet C., Jacqmin H., Neyman N., Latger‐Cannard V., Massin F., Lainey E., Le Garff‐Tavernier M., Costopoulos M., Roussel M., Mayeur‐Rousse C., Eischen A., Raggeneau V., Derrieux C., Maurer M., Asnafi V., Trinquand A., Brouzes C. and Lhermitte L. 2019. Standardization of Flow Cytometric Immunophenotyping for Hematological Malignancies: The FranceFlow Group Experience. Cytometry, 95, 1008-1018. 15. Dong HY., Kung JX., Bhardwaj V., McGill J., 2011. Flow cytometry rapidly identifies all acute promyelocytic leukemias with high specificity independent of underlying cytogenetic abnormalities, Am J Clin Pathol, 135, 76-84. 16. Korkmaz F., Malama E., Siuda M., Leiding C., Bollwein H., 2017. Effects of sodium pyruvate on viability, synthesis of reactive oxygen species, lipid peroxidation and DNA integrity of cryopreserved bovine sperm. Anim Reprod Sci, 185, 18-27. 17. Evenson DP., 2016. The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci, 169, 56-75. 18. Ibrahim SF., van den Engh G., 2007. Flow cytometry and cell sorting. In “Cell Separation”. Eds., A., Kumar, IY., Galaev B., Mattiasson 19-39. Springer, Berlin, Heidelberg. 19. Manzoor A., Patoo RA., Akram T., Shah AA., Nazir T., 2017. Sperm sexing and its utility in commercial cattle production: A review. Adv Anim Vet Sci, 5, 293-298. 20. Petrunkina AM., Harrison RAP., 2011. Cytometric solutions in veterinary andrology: Developments, advantages, and limitations. Cytometry A, 79, 338-348. 21. Christensen P., Stenvang JP., Godfrey WL., 2004. A flow cytometric method for rapid determination of sperm concentration and viability in mammalian and avian semen. J Androl, 25, 255-264. 22. Yang H., Daly J., Tiersch TR., 2015. Determination of sperm concentration using flow cytometry with simultaneous analysis of sperm plasma membrane integrity in zebrafish Danio rerio. Cytometry, 89, 350-356. 23. de Lourdes Pereira M., Oliveira H., Fonseca HM., e Costa FG., Santos C., 2016. The Role of Cytometry for Male Fertility Assessment in Toxicology. In “Flow Cytometry: Select Topics”. Eds. I., Schmid, 13-29, Intech Open. 24. Nagy S., Jansen J., Topper EK., Gadella BM., 2003. A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol Reprod, 68, 1828-1835. 25. Gürler H., Malama E., Heppelmann M., Calisici O., Leiding C., Kastelic JP., Bollwein H., 2016. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86, 562-571. 26. Chaveiro A., Santos P., Da Silva FM., 2007. Assessment of sperm apoptosis in cryopreserved bull semen after swim‐up treatment: a flow cytometric study. Reprod Domest Anim, 42, 17-21. 27. Gliozzi TM., Turri F., Manes S., Cassinelli C., Pizzi F., 2017. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen. Animal, 11, 1975-1982. 28. Kerns K., Zigo M., Drobnis EZ., Sutovsky M., Sutovsky P., 2018. Zinc ion flux during mammalian sperm capacitation. Nat Commun, 9, 2061. 29. Kalyanaraman B., Darley-Usmar V., Davies KJ., Dennery PA., Forman HJ., Grisham MB., 2012. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med, 52, 1-6. 30. de Castro LS., de Assis PM., Siqueira AF., Hamilton TR., Mendes CM., Losano JD., Assumpçao ME., 2016. Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid Med Cell Longev, 8213071. 31. Ball BA., Vo AT., Baumber J., 2001. Generation of reactive oxygen species by equine spermatozoa. Am J Vet Res, 62, 508-515. 32. Sharma R., Masaki J., Agarwal A., 2013. Sperm DNA fragmentation analysis using the TUNEL assay. In “Spermatogenesis”. Eds., DT., Carrell, KI., Aston, 279-295. Humana Press, Totowa, NJ. 33. Evenson D., 2017. Evaluation of sperm chromatin structure and DNA strand breaks is an important part of clinical male fertility assessment. Transl Androl Urol, 6, 495. 34. Malama E., Zeron Y., Janett F., Siuda M., Roth Z., Bollwein H., 2017. Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 87, 79-90. 35. Gledhill BL., 1988. Gender preselection: Historical, technical, and ethical perspectives. In “Seminars in reproductive endocrinology”. 385-395. Thieme Medical Publishers, Inc. 36. Garner DL., Gledhill BL., Pinkel D., Lake S., Stephenson D., van Dilla MA., Johnson LA., 1983. Quantification of the X-and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol Reprod, 28, 312-321. 37. Cui KH., Matthews CD., 1993. X larger than Y. Nature, 366, 117-118. 38. Kiddy CA., Hafs HD., 1971. Sex ratio at birth-prospects for control; a symposium (591.16 K5). A Symposium. ASAS, Champaign, IL. 39. Bradley MP., 1989. Immunological sexing of mammalian semen: current status and future options. J Dairy Sci, 72, 3372-3380. 40. Seidel Jr GE., 2007. Overview of sexing sperm. Theriogenology, 68, 443-446. 41. Seidel Jr GE., Garner DL., 2002. Current status of sexing mammalian spermatozoa. Reproduction, 124, 733-743. 42. Schenk JL., Suh TK., Cran DG., Seidel Jr GE., 1999. Cryopreservation of flow-sorted bovine spermatozoa. Theriogenology, 52, 1375-1391. 43. Garner DL., Evans KM., Seidel GE., 2013. Sex-sorting sperm using flow cytometry/cell sorting. In “Spermatogenesis”. Eds., DT., Carrell, KI., Aston, 279-295. Humana Press, Totowa, NJ. 44. Suh TK., Schenk JL., 2003. Pressure during flow sorting of bull sperm affects post-thaw motility characteristics. Theriogenology, 59, 516. 45. Vishwanath RJ., Moreno F., 2018. Review: Semen sexing – current state of the art with emphasis on bovine species. Animal, 12, 85-96.

The Use of Flow Cytometry in Semen Quality Analyses

Year 2020, Volume: 15 Issue: 1, 76 - 83, 30.04.2020
https://doi.org/10.17094/ataunivbd.614120

Abstract

Quality analysis of semen has started to gain value in the recent scientific world in terms of defining infertility and assisted reproductive techniques. Flow cytometry, the most advanced method of choice in these analyzes, is a method based on measuring the quality and quantity of particles including cells, nucleus, chromosomal structures and various particles with its sizes and structures in a flowing suspension by means of lasers and detectors. For this purpose, the particles that are stained with fluorochrome molecules are exposed to the laser beam scattered from the optical system after being unified, and the returning rays are collected and converted into electronic signals. Electronic signals are evaluated with softwares. Within a wide range of uses, i.e. the concentration of spermatozoa; plasma membrane and acrosome integrity; apoptosis; mitochondrial membrane potential, capacitation status; oxidative stress; lipid peroxidation; DNA integrity and gender determination purposes etc., it has been used as infertility diagnostic methods and assisted reproductive techniques which have been developed, firstly in human andrology laboratories and then in veterinary andrology laboratories. The aim of this review is to explain the role and importance of flow cytometry and in determining sperm quality and to provide detailed information about the relevant protocols.

References

  • 1. Leeuwenhoek A., 1677. Observationes de Anthonu Lewenhoeck, de natis e semine genitali animalculis. Phil Trans Roy Soc, 12, 1040-1043. 2. Andrade-Rocha FT., 2017. On the origins of the semen analysis: A close relationship with the history of the reproductive medicine. J Hum Reprod Sci, 10, 242. 3. Lode A., 1891. Untersuchungen über die Zahlen-und Regenerationsverhältnisse der Spermatozoiden bei Hund und Mensch. Pflug Arch Eur J Phy, 50, 278-292. 4. Martin E., Carnett JB., Levi JV., Pennington ME., 1902. The surgical treatment of sterility due to obstruction at the epididymis; together with a study of the morphology of human spermatozoa. Univ Pa Med Bull, 15, 2‐15. 5. Detlefsen JA., 1914. Genetic studies on a cavy species cross. Carnegie Instit Wash, 205, 1-134. 6. Hühner M., 1921. Methods of examining for spermatozoa in the diagnosis and treatment of sterility. Int J Surg, 34, 91-100. 7. Zeleny C., Faust EC., 1915. Size dimorphism in the spermatozoa from single testes. J Exp Zool, 18, 187‐240. 8. Williams WW., Savage A., 1925. Observations on the seminal micropathology of bulls. Cornell Vet, 15, 353‐375. 9. Amann RP., Waberski D., 2014. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology, 81, 5-17. 10. van Dilla MA., Gledhill BL., Lake S., Dean PN., Gray JW., Kachel V., Göhde W., 1977. Measurement of mammalian sperm deoxyribonucleic acid by flow cytometry. Problems and approaches. J Histochem Cytochem, 25, 763-773. 11. Rodriguez-Martinez H., 2014. Semen evaluation and handling: emerging techniques and future development. In “Animal Andrology: Theories and Applications” Ed., PJ Chenoweth, 509-549. Reproduction Resources, USA 12. Barlogie B., Raber MN., Schumann J., Johnson TS., Drewinko B., Swartzendruber DE., Göhde W., Andreeff M., Freireich EJ., 1983. Flow cytometry in clinical cancer research. Cancer Res, 43, 3982-3997. 13. Hengel RL., Nicholson JK., 2001. An update on the use of flow cytometry in HIV infection and AIDS. Clin Lab Med, 21, 841-856. 14. Solly F., Angelot‐Delettre F., Ticchioni M., Geneviève F., Rambaud H., Baseggio L., Plesa A., Debliquis A., Garnache‐Ottou F., Roggy A., Campos L., Aanei C., Rosenthal‐Allieri A., Georget M., Lachot S., Jacob M., Robillard N., Wuilleme S., Andre‐Kerneis E., Cornet E., Salaun V., Bennami H., Lhoumeau A., Arnoulet C., Jacqmin H., Neyman N., Latger‐Cannard V., Massin F., Lainey E., Le Garff‐Tavernier M., Costopoulos M., Roussel M., Mayeur‐Rousse C., Eischen A., Raggeneau V., Derrieux C., Maurer M., Asnafi V., Trinquand A., Brouzes C. and Lhermitte L. 2019. Standardization of Flow Cytometric Immunophenotyping for Hematological Malignancies: The FranceFlow Group Experience. Cytometry, 95, 1008-1018. 15. Dong HY., Kung JX., Bhardwaj V., McGill J., 2011. Flow cytometry rapidly identifies all acute promyelocytic leukemias with high specificity independent of underlying cytogenetic abnormalities, Am J Clin Pathol, 135, 76-84. 16. Korkmaz F., Malama E., Siuda M., Leiding C., Bollwein H., 2017. Effects of sodium pyruvate on viability, synthesis of reactive oxygen species, lipid peroxidation and DNA integrity of cryopreserved bovine sperm. Anim Reprod Sci, 185, 18-27. 17. Evenson DP., 2016. The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci, 169, 56-75. 18. Ibrahim SF., van den Engh G., 2007. Flow cytometry and cell sorting. In “Cell Separation”. Eds., A., Kumar, IY., Galaev B., Mattiasson 19-39. Springer, Berlin, Heidelberg. 19. Manzoor A., Patoo RA., Akram T., Shah AA., Nazir T., 2017. Sperm sexing and its utility in commercial cattle production: A review. Adv Anim Vet Sci, 5, 293-298. 20. Petrunkina AM., Harrison RAP., 2011. Cytometric solutions in veterinary andrology: Developments, advantages, and limitations. Cytometry A, 79, 338-348. 21. Christensen P., Stenvang JP., Godfrey WL., 2004. A flow cytometric method for rapid determination of sperm concentration and viability in mammalian and avian semen. J Androl, 25, 255-264. 22. Yang H., Daly J., Tiersch TR., 2015. Determination of sperm concentration using flow cytometry with simultaneous analysis of sperm plasma membrane integrity in zebrafish Danio rerio. Cytometry, 89, 350-356. 23. de Lourdes Pereira M., Oliveira H., Fonseca HM., e Costa FG., Santos C., 2016. The Role of Cytometry for Male Fertility Assessment in Toxicology. In “Flow Cytometry: Select Topics”. Eds. I., Schmid, 13-29, Intech Open. 24. Nagy S., Jansen J., Topper EK., Gadella BM., 2003. A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol Reprod, 68, 1828-1835. 25. Gürler H., Malama E., Heppelmann M., Calisici O., Leiding C., Kastelic JP., Bollwein H., 2016. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86, 562-571. 26. Chaveiro A., Santos P., Da Silva FM., 2007. Assessment of sperm apoptosis in cryopreserved bull semen after swim‐up treatment: a flow cytometric study. Reprod Domest Anim, 42, 17-21. 27. Gliozzi TM., Turri F., Manes S., Cassinelli C., Pizzi F., 2017. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen. Animal, 11, 1975-1982. 28. Kerns K., Zigo M., Drobnis EZ., Sutovsky M., Sutovsky P., 2018. Zinc ion flux during mammalian sperm capacitation. Nat Commun, 9, 2061. 29. Kalyanaraman B., Darley-Usmar V., Davies KJ., Dennery PA., Forman HJ., Grisham MB., 2012. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med, 52, 1-6. 30. de Castro LS., de Assis PM., Siqueira AF., Hamilton TR., Mendes CM., Losano JD., Assumpçao ME., 2016. Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid Med Cell Longev, 8213071. 31. Ball BA., Vo AT., Baumber J., 2001. Generation of reactive oxygen species by equine spermatozoa. Am J Vet Res, 62, 508-515. 32. Sharma R., Masaki J., Agarwal A., 2013. Sperm DNA fragmentation analysis using the TUNEL assay. In “Spermatogenesis”. Eds., DT., Carrell, KI., Aston, 279-295. Humana Press, Totowa, NJ. 33. Evenson D., 2017. Evaluation of sperm chromatin structure and DNA strand breaks is an important part of clinical male fertility assessment. Transl Androl Urol, 6, 495. 34. Malama E., Zeron Y., Janett F., Siuda M., Roth Z., Bollwein H., 2017. Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 87, 79-90. 35. Gledhill BL., 1988. Gender preselection: Historical, technical, and ethical perspectives. In “Seminars in reproductive endocrinology”. 385-395. Thieme Medical Publishers, Inc. 36. Garner DL., Gledhill BL., Pinkel D., Lake S., Stephenson D., van Dilla MA., Johnson LA., 1983. Quantification of the X-and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biol Reprod, 28, 312-321. 37. Cui KH., Matthews CD., 1993. X larger than Y. Nature, 366, 117-118. 38. Kiddy CA., Hafs HD., 1971. Sex ratio at birth-prospects for control; a symposium (591.16 K5). A Symposium. ASAS, Champaign, IL. 39. Bradley MP., 1989. Immunological sexing of mammalian semen: current status and future options. J Dairy Sci, 72, 3372-3380. 40. Seidel Jr GE., 2007. Overview of sexing sperm. Theriogenology, 68, 443-446. 41. Seidel Jr GE., Garner DL., 2002. Current status of sexing mammalian spermatozoa. Reproduction, 124, 733-743. 42. Schenk JL., Suh TK., Cran DG., Seidel Jr GE., 1999. Cryopreservation of flow-sorted bovine spermatozoa. Theriogenology, 52, 1375-1391. 43. Garner DL., Evans KM., Seidel GE., 2013. Sex-sorting sperm using flow cytometry/cell sorting. In “Spermatogenesis”. Eds., DT., Carrell, KI., Aston, 279-295. Humana Press, Totowa, NJ. 44. Suh TK., Schenk JL., 2003. Pressure during flow sorting of bull sperm affects post-thaw motility characteristics. Theriogenology, 59, 516. 45. Vishwanath RJ., Moreno F., 2018. Review: Semen sexing – current state of the art with emphasis on bovine species. Animal, 12, 85-96.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Fırat Korkmaz 0000-0002-9600-908X

Beste Çil This is me 0000-0003-2822-1625

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

APA Korkmaz, F., & Çil, B. (2020). Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 15(1), 76-83. https://doi.org/10.17094/ataunivbd.614120
AMA Korkmaz F, Çil B. Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. April 2020;15(1):76-83. doi:10.17094/ataunivbd.614120
Chicago Korkmaz, Fırat, and Beste Çil. “Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15, no. 1 (April 2020): 76-83. https://doi.org/10.17094/ataunivbd.614120.
EndNote Korkmaz F, Çil B (April 1, 2020) Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15 1 76–83.
IEEE F. Korkmaz and B. Çil, “Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 15, no. 1, pp. 76–83, 2020, doi: 10.17094/ataunivbd.614120.
ISNAD Korkmaz, Fırat - Çil, Beste. “Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 15/1 (April 2020), 76-83. https://doi.org/10.17094/ataunivbd.614120.
JAMA Korkmaz F, Çil B. Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2020;15:76–83.
MLA Korkmaz, Fırat and Beste Çil. “Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 15, no. 1, 2020, pp. 76-83, doi:10.17094/ataunivbd.614120.
Vancouver Korkmaz F, Çil B. Akış Sitometrisinin (Flow Cytometry) Sperma Kalite Analizlerinde Kullanımı. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2020;15(1):76-83.