Research Article
BibTex RIS Cite

Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi

Year 2021, Volume: 16 Issue: 3, 275 - 282, 30.12.2021

Abstract

Bu araştırma, ruminantların beslemesinde sıkça kullanılan buğday samanı, arpa ve fiğ yemlerine ilave edilen propiyonik asidin (%0, 1, 2 ve 3) in vitro ortamda metan gazı üretimi üzerine etkilerini belirlemek amacıyla yürütüldü. İn vitro gaz üretim tekniği için gerekli olan rumen içeriği iki yaşlı koçlardan elde edildi. Propiyonik asit ilave edilen yemler, in vitro gaz üretim tekniği ile 24 saatlik inkübasyona bırakıldı. Açığa çıkan toplam gaz ve metan gazı (CH4) miktarları bilgisayar destekli özel bir cihaz vasıtasıyla ölçüldü. Ayrıca, her bir deneme grubundaki yemlerin ham besin madde içerikleri, metabolik enerji (ME) ile net enerji laktasyon (NEL) düzeyi ve organik madde sindirilebilirliği (OMS) belirlendi. Buğday samanına ilave edilen propiyonik asidin, total gaz hacmini, CH4 (ml) miktarını, net enerji laktasyon (NEL) ve OMS’ni düşürmesine (kübik etki) rağmen CH4 (%) üzerine bir etkisinin olmadığı görüldü. Bu çalışmada arpa ve fiğ tanesine ilave edilen propiyonik asidin metan üretimi ve in vitro sindirilebilirlik üzerine bir etkisinin olmadığı tespit edildi. Yemlerin besin madde bileşimi, metan üretimi ve in vitro sindirilebilirlik değerini etkilediği belirlendi. Bu nedenle kaliteli yemlerde propiyonik asidin CH4 gazı salınımının azaltılması amacıyla kullanılamayacağı sonucuna varıldı.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Islam M., Lee SS., 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J Anim Sci and Tech, 61, 122-137.
  • 2. Johnson DE., Ward GM., 1996. Estimates of animal methane emissions. Environ Monit Assess, 42, 133-141.
  • 3. Zubieta AS., Savian JV., de Souza Filho W., Wallau MO., Gomez, AM., Bindelle J., de Faccio Carvalho PC., 2020. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems. SCI Total Environ, 754, 142029.
  • 4. Czatzkowska M., Harnisz M., Korzeniewska E., Koniuszewska I., 2020. Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: A review. Energ Sci Eng, 8, 1880-1897.
  • 5. Getachew G., Blümmel M., Makkar HPS., Becker K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim Feed Sci and Tech, 72, 261-281.
  • 6. Gasiorek M., Stefanska B., Pruszynska-Oszmalek E., Taciak M., Komisarek J., Nowak W., 2020. Effect of oat hay provision method on growth performance, rumen fermentation and blood metabolites of dairy calves during preweaning and postweaning periods. Animal, 14, 2054-2062.
  • 7. Hungate RE., Smith W., Bauchop T., Yu I., Rabinowitz JC., 1970. Formate as an intermediate in the bovine rumen fermentation. J Bacteriol, 102, 389-397.
  • 8. Russell JB., Strobel HJ., 1989. Effect of ionophores on ruminal fermentation. Appl and Envr Microbio, 55, 1.
  • 9. Kaya A., Kaya H., Çelebi Ş., 2012. Ruminant hayvanlarda metan üretimini azaltmaya yönelik çalışmalar/Studies to reduce the production of methane from ruminant. Ata Üni Zir Fak Derg, 43, 197-204.
  • 10. Honan M., Feng X., Tricarico JM., Kebreab E., 2020. Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim Prod Sci, 1-15.
  • 11. Dibner JJ., Buttin P., 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res, 11, 453-463.
  • 12. Zhang F., Nan X., Wang H., Guo Y., Xiong B., 2020. Research on the applications of calcium propionate in dairy cows: A Review. Animals, 10, 1336.
  • 13. Karademir G., Karademir B., 2003. Yem katkı maddesi olarak kullanılan biyoteknolojik ürünler (Derleme). Lalahan Hayv Araş Enst Derg, 43, 61-74.
  • 14. Lückstadt C., Mellor S., 2011. The use of organic acids in animal nutrition, with special focus on dietary potassium diformate under European and Austral-Asian conditions. Recent Adv Anim Nutr Aust, 18, 123-130.
  • 15. Palangi V., Macit M., 2021. Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Wast Biom Valoriz, 12, 4825-4834.
  • 16. Shen YZ., Ran T., Saleem AM., Wang HR., Yang WZ., 2019. Ground corn steeped in citric acid modulates in vitro gas production kinetics, fermentation patterns and dry matter digestibility. Anim Feed Sci Tech, 247, 9-14.
  • 17. Reis LG., Chaves AV., Williams SRO., Moate PJ., 2014. Comparison of enantiomers of organic acids for their effects on methane production in vitro. Anim Product Sci, 54, 1.
  • 18. Ali R., Saravia F., Hille-Reichel A., Gescher J., Horn H., 2021. Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculum, and thermal pre-treatment. Biores Tech, 319, 124166.
  • 19. Sniffen CJ., Ballard CS., Carter MP., Cotanch KW., Dann HM., Grant RJ., Mandebvu P., Suekawa M., Martin SA., 2006. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim Feed Sci Tech, 127, 13-31.
  • 20. Miranda LA., Lee Rangel HA., Mendoza Martinez GD., Crosby Galvan MM., Relling AE., Pinos Rodriguez JM., Gonzalez Hernandez M., 2017. Influence of calcium propionate on in vitro fermentation of sorghum-based diets. Rev. FCA UNCUYO, 49, 185-192.
  • 21. Sanchez N., Mendoza G., Martinez J., Hernandez P., Miranda L., Villarreal EBO., 2019. Efecto de bloques con propionato de calcio sobre respuestas productivas en corderos y GEI in vitro. Rev MVZ Cord, 24, 7188-7192.
  • 22. Chen L., Yuan X., Li J., Wang S., Dong Z., Shao T., 2017. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. J Integr Agr, 16, 1592-1600.
  • 23. Kara K., 2018. Estimated ruminal digestion values and digestion end-products of concentrated mix feed after in vitro treatment with propionic acid. Vet Med, 63, 537-545.
  • 24. Chen L., Guo G., Yuan X., Zhang J., Li J., Shao T., 2015. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability andin vitrogas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J Sci Food Agric, 96, 1678-1685.
  • 25. Chen L., Yuan XJ., Li JF., Dong ZH., Wang SR., Guo G., Shao T., 2018. Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet. Anim Produc Sci, 59,1.
  • 26. Ergün A., Tuncer ŞD., Çolpan İ., Yalçın S., Yıldız G., Küçükersan MK., Küçükersan S., Şehu A., Saçaklı P., 2020. Hayvan besleme ve beslenme hastalıkları. 8. Baskı, 165-177, Elma Teknik Basım Matbaacılık Ltd. Şti., Ankara.
  • 27. AOAC (Association of Official Analytical Chemists), 1990. Official methods of analysis. Assoc Anal Chem. Research Blvd, Ste, Rockville,USA.
  • 28. Van Soest PJ., Robertson JB., Lewis BA., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
  • 29. Menke KH., Raab L., Salewski A., Steingass H., Fritz D., Schneider W., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop, 28, 7-55.
  • 30. Chen J., Harstad OM., McAllister T., Dörsch P., Holo H., 2020. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Act Agri Scand, Sect A-Anim Sci, 69, 169-175.
  • 31. Boadi D., Benchaar C., Chiquette J., Masse D., 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can J Anim Sci, 84, 319-335.
  • 32. Kara K., 2015. In Vitro methane production and quality of corn silage treated with maleic acid. Italian J Animal Sci, 14, 3994.
  • 33. Rowghani E., Zamiri MJ., Seradj AR., 2008. The chemical composition, rumen degradability, in vitro gas production, energy content and digestibility of olive cake ensiled with additives. Iran J Vet Res, 209, 213-221.
  • 34. Kilic U., Saricicek BZ., 2010. The effects of different silage additives on in vitro gas production, digestibility and energy values of sugar beet pulp silage. Asian J Anim Vet Adv, 5, 566-574.
  • 35. Amanzougarene Z., Fondevila M., 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10, 1935.
  • 36. Ugbogu EA., Elghandour MM., Ikpeazu VO., Buendia GR., Molina OM., Arunsi UO., Salem, AZ., 2019. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J Clean Product, 213, 915-925.
  • 37. Al-Masri MR., 2003. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health and Prod, 35, 155-167.
  • 38. Getachew G., Robinson PH., DePeters EJ., Taylor SJ., 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim Feed Sci and Tech, 111, 57-71.
  • 39. Canbolat Ö., 2012. Comparison of in vitro gas production, organic matter digestibility, relative feed value and metabolizable energy contents of some cereal forages. Kafkas Üniv Vet Fak Derg, 18, 571-577.
  • 40. Gurbuz Y., Kaplan M., 2008. Chemical composition, organic matter digestibility, in vitro gas production characteristics and ensiling of sugar beet leaves as alternative feed resource. J Anim and Vet Adv, 7, 1568-1574.
  • 41. Bezabih M., Pellikaan WF., Tolera A., Khan NA., Hendriks WH., 2014. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass and Forage Sci, 69, 635-643

Effects of Propionic Acid on In vitro Gas Production, Methane Production, and Feed Quality in Hay, Barley, and Vetch Grain

Year 2021, Volume: 16 Issue: 3, 275 - 282, 30.12.2021

Abstract

This study was carried out to determine the effects of propionic acid (0, 1, 2, and 3%) supplementation to wheat straw, barley, and vetch feeds widely used in ruminant feeding on in vitro methane (CH4) gas production. The rumen content required for in vitro gas production technique was obtained from rams two years old. Feeds with supplementation of propionic acid were incubated for 24 hours by in vitro gas production technique. Total and methane gas amounts were measured by a special computer-aided device. Moreover, nutrient composition, organic matter digestibility (OMS), metabolic energy (ME), and net energy lactation (NEL) of the feeds in each experimental group were determined. It was observed that it had not affected CH4 (%), although propionic acid supplementation to the wheat straw reduced total gas amounts, CH4 (ml), net energy lactation (NEL), and OMS. The study determined that propionic acid supplementation to barley and vetch grains had no effect on methane production and in vitro digestibility of the feeds. The nutrient composition of the feeds affects methane production and in vitro digestibility values. Therefore, it was concluded that propionic acid could not be used to reduce CH4 gas emission in quality feeds.

Project Number

-

References

  • 1. Islam M., Lee SS., 2019. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. J Anim Sci and Tech, 61, 122-137.
  • 2. Johnson DE., Ward GM., 1996. Estimates of animal methane emissions. Environ Monit Assess, 42, 133-141.
  • 3. Zubieta AS., Savian JV., de Souza Filho W., Wallau MO., Gomez, AM., Bindelle J., de Faccio Carvalho PC., 2020. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems. SCI Total Environ, 754, 142029.
  • 4. Czatzkowska M., Harnisz M., Korzeniewska E., Koniuszewska I., 2020. Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: A review. Energ Sci Eng, 8, 1880-1897.
  • 5. Getachew G., Blümmel M., Makkar HPS., Becker K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim Feed Sci and Tech, 72, 261-281.
  • 6. Gasiorek M., Stefanska B., Pruszynska-Oszmalek E., Taciak M., Komisarek J., Nowak W., 2020. Effect of oat hay provision method on growth performance, rumen fermentation and blood metabolites of dairy calves during preweaning and postweaning periods. Animal, 14, 2054-2062.
  • 7. Hungate RE., Smith W., Bauchop T., Yu I., Rabinowitz JC., 1970. Formate as an intermediate in the bovine rumen fermentation. J Bacteriol, 102, 389-397.
  • 8. Russell JB., Strobel HJ., 1989. Effect of ionophores on ruminal fermentation. Appl and Envr Microbio, 55, 1.
  • 9. Kaya A., Kaya H., Çelebi Ş., 2012. Ruminant hayvanlarda metan üretimini azaltmaya yönelik çalışmalar/Studies to reduce the production of methane from ruminant. Ata Üni Zir Fak Derg, 43, 197-204.
  • 10. Honan M., Feng X., Tricarico JM., Kebreab E., 2020. Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim Prod Sci, 1-15.
  • 11. Dibner JJ., Buttin P., 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res, 11, 453-463.
  • 12. Zhang F., Nan X., Wang H., Guo Y., Xiong B., 2020. Research on the applications of calcium propionate in dairy cows: A Review. Animals, 10, 1336.
  • 13. Karademir G., Karademir B., 2003. Yem katkı maddesi olarak kullanılan biyoteknolojik ürünler (Derleme). Lalahan Hayv Araş Enst Derg, 43, 61-74.
  • 14. Lückstadt C., Mellor S., 2011. The use of organic acids in animal nutrition, with special focus on dietary potassium diformate under European and Austral-Asian conditions. Recent Adv Anim Nutr Aust, 18, 123-130.
  • 15. Palangi V., Macit M., 2021. Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Wast Biom Valoriz, 12, 4825-4834.
  • 16. Shen YZ., Ran T., Saleem AM., Wang HR., Yang WZ., 2019. Ground corn steeped in citric acid modulates in vitro gas production kinetics, fermentation patterns and dry matter digestibility. Anim Feed Sci Tech, 247, 9-14.
  • 17. Reis LG., Chaves AV., Williams SRO., Moate PJ., 2014. Comparison of enantiomers of organic acids for their effects on methane production in vitro. Anim Product Sci, 54, 1.
  • 18. Ali R., Saravia F., Hille-Reichel A., Gescher J., Horn H., 2021. Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculum, and thermal pre-treatment. Biores Tech, 319, 124166.
  • 19. Sniffen CJ., Ballard CS., Carter MP., Cotanch KW., Dann HM., Grant RJ., Mandebvu P., Suekawa M., Martin SA., 2006. Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Anim Feed Sci Tech, 127, 13-31.
  • 20. Miranda LA., Lee Rangel HA., Mendoza Martinez GD., Crosby Galvan MM., Relling AE., Pinos Rodriguez JM., Gonzalez Hernandez M., 2017. Influence of calcium propionate on in vitro fermentation of sorghum-based diets. Rev. FCA UNCUYO, 49, 185-192.
  • 21. Sanchez N., Mendoza G., Martinez J., Hernandez P., Miranda L., Villarreal EBO., 2019. Efecto de bloques con propionato de calcio sobre respuestas productivas en corderos y GEI in vitro. Rev MVZ Cord, 24, 7188-7192.
  • 22. Chen L., Yuan X., Li J., Wang S., Dong Z., Shao T., 2017. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. J Integr Agr, 16, 1592-1600.
  • 23. Kara K., 2018. Estimated ruminal digestion values and digestion end-products of concentrated mix feed after in vitro treatment with propionic acid. Vet Med, 63, 537-545.
  • 24. Chen L., Guo G., Yuan X., Zhang J., Li J., Shao T., 2015. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability andin vitrogas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J Sci Food Agric, 96, 1678-1685.
  • 25. Chen L., Yuan XJ., Li JF., Dong ZH., Wang SR., Guo G., Shao T., 2018. Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet. Anim Produc Sci, 59,1.
  • 26. Ergün A., Tuncer ŞD., Çolpan İ., Yalçın S., Yıldız G., Küçükersan MK., Küçükersan S., Şehu A., Saçaklı P., 2020. Hayvan besleme ve beslenme hastalıkları. 8. Baskı, 165-177, Elma Teknik Basım Matbaacılık Ltd. Şti., Ankara.
  • 27. AOAC (Association of Official Analytical Chemists), 1990. Official methods of analysis. Assoc Anal Chem. Research Blvd, Ste, Rockville,USA.
  • 28. Van Soest PJ., Robertson JB., Lewis BA., 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
  • 29. Menke KH., Raab L., Salewski A., Steingass H., Fritz D., Schneider W., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop, 28, 7-55.
  • 30. Chen J., Harstad OM., McAllister T., Dörsch P., Holo H., 2020. Propionic acid bacteria enhance ruminal feed degradation and reduce methane production in vitro. Act Agri Scand, Sect A-Anim Sci, 69, 169-175.
  • 31. Boadi D., Benchaar C., Chiquette J., Masse D., 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can J Anim Sci, 84, 319-335.
  • 32. Kara K., 2015. In Vitro methane production and quality of corn silage treated with maleic acid. Italian J Animal Sci, 14, 3994.
  • 33. Rowghani E., Zamiri MJ., Seradj AR., 2008. The chemical composition, rumen degradability, in vitro gas production, energy content and digestibility of olive cake ensiled with additives. Iran J Vet Res, 209, 213-221.
  • 34. Kilic U., Saricicek BZ., 2010. The effects of different silage additives on in vitro gas production, digestibility and energy values of sugar beet pulp silage. Asian J Anim Vet Adv, 5, 566-574.
  • 35. Amanzougarene Z., Fondevila M., 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals, 10, 1935.
  • 36. Ugbogu EA., Elghandour MM., Ikpeazu VO., Buendia GR., Molina OM., Arunsi UO., Salem, AZ., 2019. The potential impacts of dietary plant natural products on the sustainable mitigation of methane emission from livestock farming. J Clean Product, 213, 915-925.
  • 37. Al-Masri MR., 2003. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health and Prod, 35, 155-167.
  • 38. Getachew G., Robinson PH., DePeters EJ., Taylor SJ., 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim Feed Sci and Tech, 111, 57-71.
  • 39. Canbolat Ö., 2012. Comparison of in vitro gas production, organic matter digestibility, relative feed value and metabolizable energy contents of some cereal forages. Kafkas Üniv Vet Fak Derg, 18, 571-577.
  • 40. Gurbuz Y., Kaplan M., 2008. Chemical composition, organic matter digestibility, in vitro gas production characteristics and ensiling of sugar beet leaves as alternative feed resource. J Anim and Vet Adv, 7, 1568-1574.
  • 41. Bezabih M., Pellikaan WF., Tolera A., Khan NA., Hendriks WH., 2014. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass and Forage Sci, 69, 635-643
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Araştırma Makaleleri
Authors

Rümeysa Çiftçi This is me 0000-0002-4744-7681

Mehmet Gül

Project Number -
Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 16 Issue: 3

Cite

APA Çiftçi, R., & Gül, M. (2021). Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 16(3), 275-282.
AMA Çiftçi R, Gül M. Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. December 2021;16(3):275-282.
Chicago Çiftçi, Rümeysa, and Mehmet Gül. “Saman, Arpa Ve Fiğin Propiyonik Asit Ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi Ve Yem Değeri Üzerine Etkisi”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 16, no. 3 (December 2021): 275-82.
EndNote Çiftçi R, Gül M (December 1, 2021) Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 16 3 275–282.
IEEE R. Çiftçi and M. Gül, “Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 16, no. 3, pp. 275–282, 2021.
ISNAD Çiftçi, Rümeysa - Gül, Mehmet. “Saman, Arpa Ve Fiğin Propiyonik Asit Ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi Ve Yem Değeri Üzerine Etkisi”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 16/3 (December 2021), 275-282.
JAMA Çiftçi R, Gül M. Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2021;16:275–282.
MLA Çiftçi, Rümeysa and Mehmet Gül. “Saman, Arpa Ve Fiğin Propiyonik Asit Ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi Ve Yem Değeri Üzerine Etkisi”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol. 16, no. 3, 2021, pp. 275-82.
Vancouver Çiftçi R, Gül M. Saman, Arpa ve Fiğin Propiyonik Asit ile Muamelesinin İn Vitro Gaz Üretimi, Metan Üretimi ve Yem Değeri Üzerine Etkisi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2021;16(3):275-82.