BibTex RIS Cite

Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis

Year 2011, Volume: 12 Issue: 1, 25 - 36, 17.06.2011

Abstract

Preparation of nanosized SnO2 electroceramic powders via hydrothermal synthesis was investigated as a function of initial concentration and treatment time in order to understand the formation and growth mechanisms.  SnO2 powder was successfully synthesized from the hydrous tin oxide by hydrothermal synthesis at 200°C.  Crystalline SnO2 particles with a specific surface area as high as 170 m2/g were produced in a single step without requiring any calcination process.  As initial concentration of metal cation increases from 0.0125 to 0.05 M, an Ostwald ripening type growth process was observed in the crystallite size from 3.1 to 4.6 nm.  Evolution of tin oxide particles was also investigated by altering the treatment time from 1 to 24 h and a diffusion controlled growth behavior was observed as a function of synthesis time. 

References

  • Aoki, A. and Sasakura, H. (1970). Tin oxide thin film transistors. Jpn. J. Appl. Phys. 9, 582.
  • Baik, N.S. and Sakai, G. (2000). Hydrother- mally treated sol solution of tin oxide for thin-film gas sensor. Sensors and Actua- tors B. 63, 74–79.
  • Baik, N.S., Sakai, G., Miura, N. and Yamazoe, N. (2000). Preparation of stabilized nanosized tin oxide particles by hydro- thermal treatment. J. Am. Ceram. Soc. 83, 2983-2987.
  • Bhagwat, M., Shah, P. and Ramaswamy, V. (2003). Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Mate- rials Letters. 57, 1604-1611.
  • Caldadararu, M., Popa, V.T. and Ionescu, N.I. (1995). Surface dynamics in tin dioxide- containing catalysts I. Surface dynamics of tin dioxide interaction with propene- containing feed in presence of residual water, Appl. Catal. A. 125, 247.
  • Chopra, K.L., Major, S. and Pandya, D.K. (1983). Transparent conductors - a status review. Thin Solid Films. 102, 1-46.
  • Cullity, B.D. (1978). Elements of x-ray diffrac- tion. Addison-Wesley Pub. Co, Reading, Mass.
  • Dawar, A.L. and Joshi, J.C. (1984). Semicon- ducting transparent thin films: their prop- erties and applications. J. Mater. Sci. 19 1–23.
  • Feng, L., Liying, C., Zhiqiang, C., Jiaqiang, X., Jianmin, Z. and Xinquan, X. (2002). Two- step solid-state synthesis of tin oxide and its gas-sensing property. Materials Chemistry and Physics. 73, 335-338.
  • He, Y. and Li, Y. (1999). Chemical control syn- thesis of nanocrystalline SnO2 by hydro- thermal reaction. Materials Letters 40, 23–26.
  • Henrich, V.E. and Cox, P.A. (1994). The Sur- face Science of Metal Oxides. Cambridge University Press, Cambridge.
  • Hirano, S. (1987). Hydrothermal processing of ceramics. Am. Ceram. Soc. Bull. 66(9), 1342-44.
  • Ihokura K. and Watson, J. (1994). The Stannic Oxide Gas Sensor-Principles and Apllica- tions. CRC Pres, Boca Raton, FL.
  • Ihokura, K. (1981). New Mater. Proc. 1, 43.
  • Lee, J.H. and Park, S.J. (1993). Preparation of spherical SnO2 powders by ultrasonic spray pyrolysis. J. Am. Ceram. Soc. 76, 777-780.
  • Lifshitz, I.M. and Slyozov, V.V. (1961). The kinetics of precipitation from supersatu- rated solid solutions. J. Phys. Chem. Sol- ids. 19, 35-50.
  • Moulson, A.J. and Herbert, J.M. (1990). Elec- troceramics, New York, Chapman & Hall.
  • Nielsen, A.E. (1964). Kinetics of precipitation, Pergamon, Oxford.
  • Nitta, N. and Otani, S. (1980). Temperature dependence of resistivity of Sn-based gas sensors exposed to CO, H2 and C3H8 gases. J. Electron. Mater. 9(4), 727-743.
  • Pianaro, S.A., Bueno, P.R. and Varela, J.A. (1995). A new SnO2-based varistor sys- tem. J. Mater. Sci. Lett. 14, 692–694.
  • Popescu, D.A. and Verduraz, F.B. (2001). Infra- red studies on SnO and Pd/SnO2. Cataly- sis Today. 70, 139-154.
  • Ring, T.A. (1996). Fundamentals of ceramic powder processing and synthesis. Aca- demic Pres.
  • Seiyama, T., Egashira, M., Sakamoto, T. and Aso, I. (1972). Oxidative dehydroaroma- tization : II. Oxidation of propylene over binary oxide catalysts containing bismuth or tin, J. Catal. 24, 76.
  • Seiyama, T., Kato, A., Fujiishi, K. and Nagatani, N.A. (1962). New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 34, 1502.
  • Socrates, G. (1980). Infrared Characteristic Group Frequencies, Wiley, New York. 145.
  • Song, K.C. and Kang, Y. (2000). Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Ma- terials Letters. 42, 283-289.
  • Song, K.C. and Kim, J.H. (1999). Preparation of nanosize tin oxide particles from water- in-oil microemulsions. Journal of Colloid and Interface Science. 212, 193-196.
  • Taguchi, N. (1962). Japenese Patent Application No. 45-38200.
  • Vuong, D.D., Sakai, G., Shimanoe, K. and Ya- mazoe, N. (2004). Preparation of grain size-controlled tin oxide sols by hydro- thermal treatment for thin film sensor ap- plication, Sensors and Actuators B 103, 386–391.
  • Xu, C., Tamaki, J., Miura, N. and Yamazoe, N. (1990). Relationship between gas sensi- tivity and microstructure of porous SnO2. Denki Kagaku. 58, 1143.
  • Yamazoe, N., Fuchigami, J., Kishikawa, M. and Seiyama, T. (1979). Interactions of tin ox- ide surface with O2, H2O and H2. Surf. Sci. 86, 335.
  • Zhang, G. and Liu, M. (1999). Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. Journal of Materials Science. 34, 3213-21.
  • Zhang, J.P. (2003). Hydrothermal synthesis and characterization of SnO2 nanoparticles. Acta Chimica Sinica. 61(12), 1965-68.

HIDROTERMAL SENTEZ SÜRECINDE NANO BOYUTLU KALAY OKSITIN(SnO2) OLUŞUM MEKANIZMASI

Year 2011, Volume: 12 Issue: 1, 25 - 36, 17.06.2011

Abstract

Nano boyutlu SnO2elektroseramik tozların hidrotermal yöntemle üretimi, tozların oluşum mekanizmasını anlamak üzere başlangıç derişimi ve işlem süresinin bir fonksiyonu olarak incelendi. SnO tozları hidrotermal yöntemle su içeren kalay oksitten 2000C de başarıyla sentezlendi. 170 m2/g a kadar spesifik yüzey alanınasahip kristal SnO2 tozları kalsinasyon gerektirmeden tek basamakta üretildi. Başlangıç metal katyon derişimi 0.0125 den 0.05 M a çıkarıldığında Ostwald irileşmesi türünde bir büyüme süreciyle kristalit boyutunun 3.1 den 4.6 nm ye çıktığı gözlendi. Kalay oksit partiküllerinin oluşumu 1 ile 24 saat aralığında değiştirilerek incelendi ve sentez süresinin bir fonksiyonu olarak difüzyon kontrollü büyüme davranışı tespit edildi

References

  • Aoki, A. and Sasakura, H. (1970). Tin oxide thin film transistors. Jpn. J. Appl. Phys. 9, 582.
  • Baik, N.S. and Sakai, G. (2000). Hydrother- mally treated sol solution of tin oxide for thin-film gas sensor. Sensors and Actua- tors B. 63, 74–79.
  • Baik, N.S., Sakai, G., Miura, N. and Yamazoe, N. (2000). Preparation of stabilized nanosized tin oxide particles by hydro- thermal treatment. J. Am. Ceram. Soc. 83, 2983-2987.
  • Bhagwat, M., Shah, P. and Ramaswamy, V. (2003). Synthesis of nanocrystalline SnO2 powder by amorphous citrate route. Mate- rials Letters. 57, 1604-1611.
  • Caldadararu, M., Popa, V.T. and Ionescu, N.I. (1995). Surface dynamics in tin dioxide- containing catalysts I. Surface dynamics of tin dioxide interaction with propene- containing feed in presence of residual water, Appl. Catal. A. 125, 247.
  • Chopra, K.L., Major, S. and Pandya, D.K. (1983). Transparent conductors - a status review. Thin Solid Films. 102, 1-46.
  • Cullity, B.D. (1978). Elements of x-ray diffrac- tion. Addison-Wesley Pub. Co, Reading, Mass.
  • Dawar, A.L. and Joshi, J.C. (1984). Semicon- ducting transparent thin films: their prop- erties and applications. J. Mater. Sci. 19 1–23.
  • Feng, L., Liying, C., Zhiqiang, C., Jiaqiang, X., Jianmin, Z. and Xinquan, X. (2002). Two- step solid-state synthesis of tin oxide and its gas-sensing property. Materials Chemistry and Physics. 73, 335-338.
  • He, Y. and Li, Y. (1999). Chemical control syn- thesis of nanocrystalline SnO2 by hydro- thermal reaction. Materials Letters 40, 23–26.
  • Henrich, V.E. and Cox, P.A. (1994). The Sur- face Science of Metal Oxides. Cambridge University Press, Cambridge.
  • Hirano, S. (1987). Hydrothermal processing of ceramics. Am. Ceram. Soc. Bull. 66(9), 1342-44.
  • Ihokura K. and Watson, J. (1994). The Stannic Oxide Gas Sensor-Principles and Apllica- tions. CRC Pres, Boca Raton, FL.
  • Ihokura, K. (1981). New Mater. Proc. 1, 43.
  • Lee, J.H. and Park, S.J. (1993). Preparation of spherical SnO2 powders by ultrasonic spray pyrolysis. J. Am. Ceram. Soc. 76, 777-780.
  • Lifshitz, I.M. and Slyozov, V.V. (1961). The kinetics of precipitation from supersatu- rated solid solutions. J. Phys. Chem. Sol- ids. 19, 35-50.
  • Moulson, A.J. and Herbert, J.M. (1990). Elec- troceramics, New York, Chapman & Hall.
  • Nielsen, A.E. (1964). Kinetics of precipitation, Pergamon, Oxford.
  • Nitta, N. and Otani, S. (1980). Temperature dependence of resistivity of Sn-based gas sensors exposed to CO, H2 and C3H8 gases. J. Electron. Mater. 9(4), 727-743.
  • Pianaro, S.A., Bueno, P.R. and Varela, J.A. (1995). A new SnO2-based varistor sys- tem. J. Mater. Sci. Lett. 14, 692–694.
  • Popescu, D.A. and Verduraz, F.B. (2001). Infra- red studies on SnO and Pd/SnO2. Cataly- sis Today. 70, 139-154.
  • Ring, T.A. (1996). Fundamentals of ceramic powder processing and synthesis. Aca- demic Pres.
  • Seiyama, T., Egashira, M., Sakamoto, T. and Aso, I. (1972). Oxidative dehydroaroma- tization : II. Oxidation of propylene over binary oxide catalysts containing bismuth or tin, J. Catal. 24, 76.
  • Seiyama, T., Kato, A., Fujiishi, K. and Nagatani, N.A. (1962). New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 34, 1502.
  • Socrates, G. (1980). Infrared Characteristic Group Frequencies, Wiley, New York. 145.
  • Song, K.C. and Kang, Y. (2000). Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Ma- terials Letters. 42, 283-289.
  • Song, K.C. and Kim, J.H. (1999). Preparation of nanosize tin oxide particles from water- in-oil microemulsions. Journal of Colloid and Interface Science. 212, 193-196.
  • Taguchi, N. (1962). Japenese Patent Application No. 45-38200.
  • Vuong, D.D., Sakai, G., Shimanoe, K. and Ya- mazoe, N. (2004). Preparation of grain size-controlled tin oxide sols by hydro- thermal treatment for thin film sensor ap- plication, Sensors and Actuators B 103, 386–391.
  • Xu, C., Tamaki, J., Miura, N. and Yamazoe, N. (1990). Relationship between gas sensi- tivity and microstructure of porous SnO2. Denki Kagaku. 58, 1143.
  • Yamazoe, N., Fuchigami, J., Kishikawa, M. and Seiyama, T. (1979). Interactions of tin ox- ide surface with O2, H2O and H2. Surf. Sci. 86, 335.
  • Zhang, G. and Liu, M. (1999). Preparation of nanostructured tin oxide using a sol-gel process based on tin tetrachloride and ethylene glycol. Journal of Materials Science. 34, 3213-21.
  • Zhang, J.P. (2003). Hydrothermal synthesis and characterization of SnO2 nanoparticles. Acta Chimica Sinica. 61(12), 1965-68.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

M. Ozan Özer This is me

Ender Suvaci

Aydın Doğan

Publication Date June 17, 2011
Published in Issue Year 2011 Volume: 12 Issue: 1

Cite

APA Özer, M. O., Suvaci, E., & Doğan, A. (2011). Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 12(1), 25-36.
AMA Özer MO, Suvaci E, Doğan A. Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis. AUJST-A. June 2011;12(1):25-36.
Chicago Özer, M. Ozan, Ender Suvaci, and Aydın Doğan. “Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 12, no. 1 (June 2011): 25-36.
EndNote Özer MO, Suvaci E, Doğan A (June 1, 2011) Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 12 1 25–36.
IEEE M. O. Özer, E. Suvaci, and A. Doğan, “Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis”, AUJST-A, vol. 12, no. 1, pp. 25–36, 2011.
ISNAD Özer, M. Ozan et al. “Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 12/1 (June 2011), 25-36.
JAMA Özer MO, Suvaci E, Doğan A. Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis. AUJST-A. 2011;12:25–36.
MLA Özer, M. Ozan et al. “Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 12, no. 1, 2011, pp. 25-36.
Vancouver Özer MO, Suvaci E, Doğan A. Formation Mechanism of Nanosized Tin Oxide (SnO2) Powder During Hydrothermal Synthesis. AUJST-A. 2011;12(1):25-36.