BibTex RIS Cite

-

Year 2015, Volume: 16 Issue: 2, 239 - 247, 13.11.2015
https://doi.org/10.18038/btd-a.46036

Abstract

This study involved the expression of the kinetics of bacterial cellulose production by Gluconacetobacter hansenii P2A (KUEN 1606); a strain which was originally isolated from a rotten plum. Bacterial cellulose production was realized in Hestrin Schramm medium under static and agitated cultivation conditions. The experimental data were fitted to relevant kinetic models for cell growth and cellulose production and model parameters thereof were calculated accordingly. Results proved that the growth of Gluconacetobacter hansenii P2A was best described by Monod equation for both stationary and agitated culture conditions (R21). Monod parameters max and Ks were identified as 0.081 h-1, 45.88 g.l-1 and 0.224 h-1, 22.85 g.l-1 for static and agitated conditions, respectively. For the description of product formation kinetics, Leudeking Piret model was selected according to the relatively high regression coefficients of 0.96 and 0.98, for stationary and agitated culture conditions, respectively. These constructed models of high accuracy are convenient to form the basis for the design of pilot and industrial scale production of bacterial cellulose by Gluconacetobacter hansenii P2A (KUEN 1606)

References

  • Aydın Y.A. and Aksoy, N. D. (2014) Isolation and Characterization of an Efficient Bacterial Cellulose Producer Strain in Agitated Culture: Gluconacetobacter hansenii P2A, Applied Microbiology and Biotechnology 98(3), 1065-1075.
  • Bae. S. O. and Shoda, M. (2005). Production of Bacterial Cellulose by Acetobacter Xylinum BPR2001 using Molasses Medium in a Jar Fermenter, Applied Microbiology and Biotechnology 67(1), 45- 51.
  • Chawla, P.R., Bajaj, I.B., Survase, S.A. and Singhal, R.S. (2009). Microbial Cellulose: Fermentative Production and Applications, Food Technology and Biotechnology 47(2), 107-124.
  • Choi, C. N., Song, H. J., Kim, M. J., Chang, M. H. ve Kim, S. J. (2009). Properties of Bacterial Cellulose Produced in A Pilot-Scale Spherical Type Bubble Column Bioreactor, Korean Journal of Chemical Engineering 26(1), 136-140.
  • Czaja, W., Romanovicz, D. ve Brown Jr., R. M. (2004). Structural Investigations of Microbial Cellulose Produced in Stationery and Agitated Culture, Cellulose 11 (3-4), 403-411.
  • Ford, E. N. J., Mendon, S. K., Thames, S. F. ve Rawlins, J. W. (2010). X-ray Diffraction of Cotton Treated with Neutralized Vegetable Oil-based Macromolecular Crosslinkers, Journal of Engineered Fibers and Fabrics 5(1), 10-20.
  • Klemm, D., Heublein, B., Fink, H.P. and Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition 44(22), 3358-3393.
  • Kongruang, S. (2008). Bacterial Cellulose Production by Acetobacter Xylinum Strains from Agricultural Waste Products, Applied Biochemistry and Biotechnology 148(1-3), 245-256.
  • Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Goncalves-Miskiewicz, M., Turkiewicz, M. and Bielecki, S. (2002). Factors Affecting the Yield and Properties of Bacterial Cellulose, Journal of Industrial Microbiology and Biotechnology 29(4), 189-195.
  • Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Analytical Chemistry 31(3) 426-428.
  • Mohite, B. V., Kamalja, K. K. and Patil, S. V. (2012). Statistical Optimization of Culture Conditions for Enhanced Bacterial Cellulose Production by Gluconoacetobacter Hansenii NCIM 2529, Cellulose 19(5), 1655-1666.
  • Park, J. K., Park, Y. H. and Jung, J.Y. (2003). Production of Bacterial Cellulose by Gluconacetobacter Hansenii PJK Isolated from A Rotten Apple, Biotechnology and Bioprocess Engineering 8(2), 83-88.
  • Sani, A. & Dahman, Y. (2010). Improvements in The Production of Bacterial Synthesized Biocellulose NanoŞbres using Different Culture Methods, Journal of Chemical Technology and Biotechnology 85(2), 151-164.
  • Schramm, M. and Hestrin, S. (1954) Synthesis of Cellulose by Acetobacter Xylinum. 1: Micromethod for the Determination of Celluloses, Biochemical Journal 56(1), 163-166.
  • Shoda, M. and Sugano, Y. (2005). Recent Advances in Bacterial Cellulose Production, Biotechnology and Bioprocess Engineering 10(1), 1-8.
  • Tobajas, M. and García-Calvo, E. (2000). Comparison of Experimental Methods for Determination of the Volumetric Mass Transfer Coefficient in Fermentation Processes, Heat and Mass Transfer 36(3), 201-207.
  • Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K., Yamada, F. and Yoshinaga, F. (1995). The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov., Journal of General and Applied Microbiology 41(4), 307-314.  

GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ

Year 2015, Volume: 16 Issue: 2, 239 - 247, 13.11.2015
https://doi.org/10.18038/btd-a.46036

Abstract

Bu çalışmada, çürük erikten izole edilen ve mutasyon direnci sergilediği ispatlanan
Gluconacetobacter hansenii P2A (KUEN 1606) suşu ile, Hestrin Schramm besiyeri kullanılarak, statik
ve karıştırmalı koşullar altında bakteriyel selüloz üretimi gerçekleştirilmiş, süreç, kinetik modeller ile
tanımlanmış ve ilgili parametreler tespit edilmiştir. Sonuçlar, hücre büyümesinin her iki kültivasyon
koşulunda da Monod ifadesine uygunluk gösterdiğini (R21) ortaya koymuştur. Monod sabitleri max ve
Ks, statik ve karıştırmalı koşullar için sırasıyla, 0.081 h-1, 45.88 g.l-1 ve 0.224 h-1, 22.85 g.l-1 olarak
belirlenmiştir. Ürün oluşumu kinetiği irdelendiğinde ise, Leudeking-Piret modelinin deneysel verilere
en uygun model olduğu saptanmış, regresyon katsayıları, statik ve karıştırmalı koşullar için sırasıyla,
0.96 ve 0.98 olarak hesaplanmıştır. Oluşturulan yüksek hassasiyetteki modeller, Gluconacetobacter
hansenii P2A (KUEN 1606) ile gerçekleştirilecek pilot ve endüstriyel ölçekli bakteriyel selüloz
üretiminin tasarımında temel oluşturacak niteliktedir.

References

  • Aydın Y.A. and Aksoy, N. D. (2014) Isolation and Characterization of an Efficient Bacterial Cellulose Producer Strain in Agitated Culture: Gluconacetobacter hansenii P2A, Applied Microbiology and Biotechnology 98(3), 1065-1075.
  • Bae. S. O. and Shoda, M. (2005). Production of Bacterial Cellulose by Acetobacter Xylinum BPR2001 using Molasses Medium in a Jar Fermenter, Applied Microbiology and Biotechnology 67(1), 45- 51.
  • Chawla, P.R., Bajaj, I.B., Survase, S.A. and Singhal, R.S. (2009). Microbial Cellulose: Fermentative Production and Applications, Food Technology and Biotechnology 47(2), 107-124.
  • Choi, C. N., Song, H. J., Kim, M. J., Chang, M. H. ve Kim, S. J. (2009). Properties of Bacterial Cellulose Produced in A Pilot-Scale Spherical Type Bubble Column Bioreactor, Korean Journal of Chemical Engineering 26(1), 136-140.
  • Czaja, W., Romanovicz, D. ve Brown Jr., R. M. (2004). Structural Investigations of Microbial Cellulose Produced in Stationery and Agitated Culture, Cellulose 11 (3-4), 403-411.
  • Ford, E. N. J., Mendon, S. K., Thames, S. F. ve Rawlins, J. W. (2010). X-ray Diffraction of Cotton Treated with Neutralized Vegetable Oil-based Macromolecular Crosslinkers, Journal of Engineered Fibers and Fabrics 5(1), 10-20.
  • Klemm, D., Heublein, B., Fink, H.P. and Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition 44(22), 3358-3393.
  • Kongruang, S. (2008). Bacterial Cellulose Production by Acetobacter Xylinum Strains from Agricultural Waste Products, Applied Biochemistry and Biotechnology 148(1-3), 245-256.
  • Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Goncalves-Miskiewicz, M., Turkiewicz, M. and Bielecki, S. (2002). Factors Affecting the Yield and Properties of Bacterial Cellulose, Journal of Industrial Microbiology and Biotechnology 29(4), 189-195.
  • Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Analytical Chemistry 31(3) 426-428.
  • Mohite, B. V., Kamalja, K. K. and Patil, S. V. (2012). Statistical Optimization of Culture Conditions for Enhanced Bacterial Cellulose Production by Gluconoacetobacter Hansenii NCIM 2529, Cellulose 19(5), 1655-1666.
  • Park, J. K., Park, Y. H. and Jung, J.Y. (2003). Production of Bacterial Cellulose by Gluconacetobacter Hansenii PJK Isolated from A Rotten Apple, Biotechnology and Bioprocess Engineering 8(2), 83-88.
  • Sani, A. & Dahman, Y. (2010). Improvements in The Production of Bacterial Synthesized Biocellulose NanoŞbres using Different Culture Methods, Journal of Chemical Technology and Biotechnology 85(2), 151-164.
  • Schramm, M. and Hestrin, S. (1954) Synthesis of Cellulose by Acetobacter Xylinum. 1: Micromethod for the Determination of Celluloses, Biochemical Journal 56(1), 163-166.
  • Shoda, M. and Sugano, Y. (2005). Recent Advances in Bacterial Cellulose Production, Biotechnology and Bioprocess Engineering 10(1), 1-8.
  • Tobajas, M. and García-Calvo, E. (2000). Comparison of Experimental Methods for Determination of the Volumetric Mass Transfer Coefficient in Fermentation Processes, Heat and Mass Transfer 36(3), 201-207.
  • Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K., Yamada, F. and Yoshinaga, F. (1995). The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov., Journal of General and Applied Microbiology 41(4), 307-314.  
There are 17 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yasar Aydın

Nuran Deveci Aksoy

Publication Date November 13, 2015
Published in Issue Year 2015 Volume: 16 Issue: 2

Cite

APA Aydın, Y., & Deveci Aksoy, N. (2015). GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 16(2), 239-247. https://doi.org/10.18038/btd-a.46036
AMA Aydın Y, Deveci Aksoy N. GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ. AUJST-A. November 2015;16(2):239-247. doi:10.18038/btd-a.46036
Chicago Aydın, Yasar, and Nuran Deveci Aksoy. “GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16, no. 2 (November 2015): 239-47. https://doi.org/10.18038/btd-a.46036.
EndNote Aydın Y, Deveci Aksoy N (November 1, 2015) GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16 2 239–247.
IEEE Y. Aydın and N. Deveci Aksoy, “GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ”, AUJST-A, vol. 16, no. 2, pp. 239–247, 2015, doi: 10.18038/btd-a.46036.
ISNAD Aydın, Yasar - Deveci Aksoy, Nuran. “GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 16/2 (November 2015), 239-247. https://doi.org/10.18038/btd-a.46036.
JAMA Aydın Y, Deveci Aksoy N. GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ. AUJST-A. 2015;16:239–247.
MLA Aydın, Yasar and Nuran Deveci Aksoy. “GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 16, no. 2, 2015, pp. 239-47, doi:10.18038/btd-a.46036.
Vancouver Aydın Y, Deveci Aksoy N. GLUCONACETOBACTER HANSENİİ P2A İLE GERÇEKLEŞTİRİLEN BAKTERİYEL SELÜLOZ ÜRETİMİNİN KİNETİK MODELLENMESİ. AUJST-A. 2015;16(2):239-47.