Short Communication
BibTex RIS Cite

Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets

Year 2022, Volume: 69 Issue: 3, 337 - 340, 30.06.2022
https://doi.org/10.33988/auvfd.1059346

Abstract

The aim of the study is to investigate the effects of humic acid and boric acid as feed additives on rumen fermentation parameters in rams. For this purpose, 3 yearling rams were used in this experiment. Rams in each treatment; a control with no supplements (C), 180 ppm boric acid (B) and 5 ml/kg humic acid (H) with 65:35 forage to concentrate ratio. Each experimental period lasted 14 days, with 12 first days of diet adaptation. Totally, the experimental period lasted 42 days. In both time periods (0 and 3h after feeding), there were no significant differences (P>0.05) on rumen pH, ammonia, protozoa count, estimated methane production and volatile fatty acid composition. However, butyric acid concentration tended to be higher in experimental groups (P=0.08) compared with control. As a result of this study, these feed additives did not modify the rumen milieu and showed no negative effect in rams.
Keywords: Boron, humate, methane, volatile fatty acids.

Supporting Institution

This work was supported by the Boron Research Institute (BOREN) (Project No. 2011.Ç0302).

Project Number

Project No. 2011.Ç0302

References

  • Achard FK (1986): Rich soils for cures. Cereals Chemical Ann, 11, 391-403.
  • AOAC (2000): Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists, Virginia, USA.
  • Białek M, Czauderna M, Krajewska KA, et al (2019): Selected physiological effects of boron compounds for animals and humans. A review. J Anim Feed Sci, 28, 307-320.
  • Blümmel M, Aiple KP, Steingaβ H, et al (1999): A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J Anim Physiol Anim Nutr (Berl), 81, 157-167.
  • Chalupa W (1977): Manipulating rumen fermentation. J Anim Sci, 45, 585-599.
  • Eckard RJ, Grainger C, De Klein CAM (2010): Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Sci, 130, 47–56.
  • El-Zaiat HM, Morsy AS, El-Wakeel EA, et al (2018): Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J Anim Feed Sci, 27, 105-113.
  • Galip N, Polat U, Biricik H (2010): Effects of supplemental humic acid on ruminal fermentation and blood variables in rams. Italian J Anim Sci, 9, e74.
  • Ikyume TT, Sowande OS, Yusuf AO, et al (2020): In vitro gas production, methane production and fermentation kinetics of concentrate diet containing incremental levels of sodium humate. Agric Conspec Sci, 85, 183-189.
  • Kholif AE, Matloup OH, EL-Bltagy EA, et al (2021): Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livestock Sci, 253, 104699.
  • Li RW, Wu S, Baldwin RL, et al (2012): Perturbation dynamics of the rumen microbiota in response to exogenous butyrate. PloS one, 7, e29392.
  • Mathieu F, Jouany JP, Sénaud J, et al (1996): The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod Nutr Dev, 6, 271–287.
  • Miltko R, Rozbicka-Wieczorek JA, Więsyk E, et al (2016): The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in the rumen, and fatty acid profiles in the rumen content and muscles of lambs. Acta Vet Beogr, 66, 373–391.
  • Mwangi FW, Suybeng B, Gardiner CP, et al (2022): Effect of incremental proportions of Desmanthus spp. in isonitrogenous forage diets on growth performance, rumen fermentation and plasma metabolites of pen-fed growing Brahman, Charbray and Droughtmaster crossbred beef steers. Plos One, 17, e0260918.
  • Ogimoto K, Imai S (1981): Atlas of rumen microbiology. Japan Scientific Societies Press, Japan.
  • Sizmaz O, Koksal BH, Yildiz G (2017): Rumen microbial fermentation, protozoan abundance, and boron availability in yearling rams fed diets with different boron concentrations. J Anim Feed Sci, 26, 59-64.
  • Sizmaz O, Calik A, Gumus H, et al (2020): Effects of probiotics on in vitro ruminal fermentation, abundance of cellulolytic bacteria and estimated methane production. Ankara Univ Vet Fak Derg, 67, 249-255.
  • Terr, SA, Ribeiro GDO, Gruninger RJ, et al (2018): Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers. J Anim Sci, 96, 3863-3877.
  • Ungerfeld EM (2020): Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol, 11, 589.
  • Váradyová Z, Kišidayová S, Jalč D (2009): Effect of humic acid on fermentation and ciliate protozoan population in rumen fluid of sheep in vitro. J Sci Food and Agri, 89, 1936-1941.
Year 2022, Volume: 69 Issue: 3, 337 - 340, 30.06.2022
https://doi.org/10.33988/auvfd.1059346

Abstract

Project Number

Project No. 2011.Ç0302

References

  • Achard FK (1986): Rich soils for cures. Cereals Chemical Ann, 11, 391-403.
  • AOAC (2000): Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists, Virginia, USA.
  • Białek M, Czauderna M, Krajewska KA, et al (2019): Selected physiological effects of boron compounds for animals and humans. A review. J Anim Feed Sci, 28, 307-320.
  • Blümmel M, Aiple KP, Steingaβ H, et al (1999): A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J Anim Physiol Anim Nutr (Berl), 81, 157-167.
  • Chalupa W (1977): Manipulating rumen fermentation. J Anim Sci, 45, 585-599.
  • Eckard RJ, Grainger C, De Klein CAM (2010): Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Sci, 130, 47–56.
  • El-Zaiat HM, Morsy AS, El-Wakeel EA, et al (2018): Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J Anim Feed Sci, 27, 105-113.
  • Galip N, Polat U, Biricik H (2010): Effects of supplemental humic acid on ruminal fermentation and blood variables in rams. Italian J Anim Sci, 9, e74.
  • Ikyume TT, Sowande OS, Yusuf AO, et al (2020): In vitro gas production, methane production and fermentation kinetics of concentrate diet containing incremental levels of sodium humate. Agric Conspec Sci, 85, 183-189.
  • Kholif AE, Matloup OH, EL-Bltagy EA, et al (2021): Humic substances in the diet of lactating cows enhanced feed utilization, altered ruminal fermentation, and improved milk yield and fatty acid profile. Livestock Sci, 253, 104699.
  • Li RW, Wu S, Baldwin RL, et al (2012): Perturbation dynamics of the rumen microbiota in response to exogenous butyrate. PloS one, 7, e29392.
  • Mathieu F, Jouany JP, Sénaud J, et al (1996): The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod Nutr Dev, 6, 271–287.
  • Miltko R, Rozbicka-Wieczorek JA, Więsyk E, et al (2016): The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in the rumen, and fatty acid profiles in the rumen content and muscles of lambs. Acta Vet Beogr, 66, 373–391.
  • Mwangi FW, Suybeng B, Gardiner CP, et al (2022): Effect of incremental proportions of Desmanthus spp. in isonitrogenous forage diets on growth performance, rumen fermentation and plasma metabolites of pen-fed growing Brahman, Charbray and Droughtmaster crossbred beef steers. Plos One, 17, e0260918.
  • Ogimoto K, Imai S (1981): Atlas of rumen microbiology. Japan Scientific Societies Press, Japan.
  • Sizmaz O, Koksal BH, Yildiz G (2017): Rumen microbial fermentation, protozoan abundance, and boron availability in yearling rams fed diets with different boron concentrations. J Anim Feed Sci, 26, 59-64.
  • Sizmaz O, Calik A, Gumus H, et al (2020): Effects of probiotics on in vitro ruminal fermentation, abundance of cellulolytic bacteria and estimated methane production. Ankara Univ Vet Fak Derg, 67, 249-255.
  • Terr, SA, Ribeiro GDO, Gruninger RJ, et al (2018): Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers. J Anim Sci, 96, 3863-3877.
  • Ungerfeld EM (2020): Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Front Microbiol, 11, 589.
  • Váradyová Z, Kišidayová S, Jalč D (2009): Effect of humic acid on fermentation and ciliate protozoan population in rumen fluid of sheep in vitro. J Sci Food and Agri, 89, 1936-1941.
There are 20 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Short Report
Authors

Özge Sızmaz 0000-0002-2027-5074

Bekir Hakan Köksal 0000-0002-5676-446X

Gültekin Yıldız 0000-0002-1003-9254

Project Number Project No. 2011.Ç0302
Publication Date June 30, 2022
Published in Issue Year 2022Volume: 69 Issue: 3

Cite

APA Sızmaz, Ö., Köksal, B. H., & Yıldız, G. (2022). Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 69(3), 337-340. https://doi.org/10.33988/auvfd.1059346
AMA Sızmaz Ö, Köksal BH, Yıldız G. Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets. Ankara Univ Vet Fak Derg. June 2022;69(3):337-340. doi:10.33988/auvfd.1059346
Chicago Sızmaz, Özge, Bekir Hakan Köksal, and Gültekin Yıldız. “Rumen Fermentation Characteristics of Rams Fed Supplemental Boric Acid and Humic Acid Diets”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 69, no. 3 (June 2022): 337-40. https://doi.org/10.33988/auvfd.1059346.
EndNote Sızmaz Ö, Köksal BH, Yıldız G (June 1, 2022) Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets. Ankara Üniversitesi Veteriner Fakültesi Dergisi 69 3 337–340.
IEEE Ö. Sızmaz, B. H. Köksal, and G. Yıldız, “Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets”, Ankara Univ Vet Fak Derg, vol. 69, no. 3, pp. 337–340, 2022, doi: 10.33988/auvfd.1059346.
ISNAD Sızmaz, Özge et al. “Rumen Fermentation Characteristics of Rams Fed Supplemental Boric Acid and Humic Acid Diets”. Ankara Üniversitesi Veteriner Fakültesi Dergisi 69/3 (June 2022), 337-340. https://doi.org/10.33988/auvfd.1059346.
JAMA Sızmaz Ö, Köksal BH, Yıldız G. Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets. Ankara Univ Vet Fak Derg. 2022;69:337–340.
MLA Sızmaz, Özge et al. “Rumen Fermentation Characteristics of Rams Fed Supplemental Boric Acid and Humic Acid Diets”. Ankara Üniversitesi Veteriner Fakültesi Dergisi, vol. 69, no. 3, 2022, pp. 337-40, doi:10.33988/auvfd.1059346.
Vancouver Sızmaz Ö, Köksal BH, Yıldız G. Rumen fermentation characteristics of rams fed supplemental boric acid and humic acid diets. Ankara Univ Vet Fak Derg. 2022;69(3):337-40.