Erratum
BibTex RIS Cite

Erratum: Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması

Year 2022, Volume: 5 Issue: 2, 124 - 124, 16.05.2022
The original article was published on August 20, 2021. https://dergipark.org.tr/en/pub/avrasyasbd/issue/64541/862336

Erratum Note

Yazar isimleri ve teşekkür kısmında düzeltme yapıldı

Abstract

Bu çalışmada timokinon benzeri pekçok biyoktif madde içeren çörek otu (Nigella sativa L. ) tohumu esansiyel yağının antioksidan özellikleri çeşitli in vitro yöntemlerle araştırıldı. Çörek otu tohumu esansiyel yağı için toplam fenolik madde tayini, DPPH radikali giderme aktivitesinin tayini, linoleik asit sisteminde antioksidan aktivite, Fe+2 iyonlarını şelatlama aktivitesi, süperoksit radikali giderme aktivitesi tayini ve indirgeme kapasitesi belirlendi. Buna göre çörek otu tohumu esansiyel yağında toplam fenolik madde miktarı 30.5 μg/ml, DPPH radikali giderme aktivitesi %25.10 inhibisyonda, linoleik asit sisteminde ferrik tiyosiyanat metodu ile belirlenen antioksidan aktivite %23 inhibisyonda, Fe+2 iyonlarını şelatlama aktivitesi %52.33, süperoksit radikali giderme aktivitesi %20.63 inhibisyonda ve indirgeme kapasitesi ise 0.66 absorbans olarak belirlendi. Sonuç olarak bu in vitro antioksidan aktiviteleri gözönüne alındığında çörek otu tohumu esansiyel yağının gıda, kozmetik, farmasötik ve hayvan besleme alanında ucuz ve doğal alternatif bir antioksidan olarak değerlendirilebileceği öngörülmektedir.

Supporting Institution

Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

AKU BAPK, Project No: 18.KARİYER.123

Thanks

Bu çalışma Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (AKU BAPK, Project No: 18.KARİYER.123).

References

  • 1. Al-Ghamdi MS. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology 76: 45-48.
  • 2. Al-Saleh IA, Billedo G, El-Doush II. (2006), Level of selenium, tocopherol, thymoquinone and thymol of Nigella sativa seed J Food Compos Anal 19:167-175.
  • 3. Badary OA. (1999). Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. Journal of Ethnopharmacology 67:135-142.
  • 4. Blois MS (1958). Antioxidant determinations by the use of stable free radical. Nature 1199-1200.
  • 5. Bulca S. (2015). Çörek otunun bileşenleri ve bu yağın ve diğer bazı uçucu yağların antioksidan olarak gıda teknolojisinde kullanımı. Journal of Adnan Menderes University Agricultural Faculty 11(2):29- 36.
  • 6. Burits M, Bucar F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323-328.
  • 7. Butt AS, Nisar N, Mughal TA, Ghani N, Altaf I (2019). Anti-oxidative and anti-proliferative activities of extracted phytochemical compound thymoquinone. J Pak Med Assoc 69(10):1479-1485.
  • 8. Chen X, Ahn DU (1998). Antioxidant activites of six natural phenolics against lipid oxidation induced by Fe2+ or ultraviolet light. Journal of the American Oil Chemist’s Society 75: 1717-1721.
  • 9. Corpas FJ, Fernandez-Ocana A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodriguez-Serano M, Chaki M, Pedrajas JR, Sandalio LM, Del Rio LA, Barroso JB (2006). The espression of different superoxide dismutase froms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47(7): 984-994.
  • 10. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S (2015). Thymoquinone and its therapeutic potentials. Pharmacol Res 95-96:138-58.
  • 11. Dinis TCP, Madeira VMC, Almeida LM (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) assay inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315(1): 161-169.
  • 12. Ferdous AJ, Islam, SN, Ashan M, Hasan CM, Ahmed ZU. (1992). In vitro antibacterial activity of the volatile oil of Nigella sativa seeds against multiple drug resistant isolates of Shigella, V. Cholerae and E. Coli. Phytother Res 6: 137-140.
  • 13. Halliwell B, Clement MV, Long LH. (2000) Hydrogen peroxide in the human body. FEBS Letter 486: 10-13.
  • 14. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: An overview. In: Methods in Enzymology 186: 1-85.
  • 15. Juntachote T, Berghofer E (2005). Antioxidative properties and stability of ethanolic extracats of holy basil and galangal. Food Chemistry 92: 193-202.
  • 16. Kiralan M (2014). Changes in volatile compounds of black cumin (Nigella Sativa L.) seed oil during thermal oxidation. International Journal of Food Properties 17:1482-1489.
  • 17. Mılıauskas G, Venskutonıs PR, Van Beek TA (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemisrty 85: 231-237.
  • 18. Mohammed NK, Abd Manap MY, Tan CP, Muhialdin BJ, Alhelli AM, Meor Hussin AS (2016). The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L) Oil: Evidence-based complement. Altern. Med pp. 1-10.
  • 19. Onat T, Emerk K, Sözmen EY. İnsan Biyokimyası. 2. Baskı, Palme Yayıncılık, 2006, Ankara.
  • 20. Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition 44: 307-315.
  • 21. Pan Y, Zhang X, Wang H, Liang Y, Zhu J, Li H, Zhang Z, Wu Q (2007). Antioxidant potential of ethanolic extract of Polygonum cuspidatum and application in peanut oil. Food Chemistry 105: 1518-1524.
  • 22. Ramadan MF (2007). Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. International Journal of Food Science and Technology 42(10): 1208-1218.
  • 23. Ramadan MF, Kroh LW, Mörsel JT (2003). Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961-6969.
  • 24. Randhawa MA, Al-Ghamdı MS (2002). A review of the pharmaco-therapeutic effectes of Nigella sativa. Pakistan J Med Res 41(2): 7783. 25. Salem ML (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharm 5: 1749-1770.
  • 26. Shon MY, Kım TH, Sung NJ (2003). Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chemistry 82: 593-597.
  • 27. Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.
  • 28. Thippeswamy NB, Naidu KA (2005). Antioxidant potency of cumin varieties- cumin, black cumin and bitter cumin-on antioxidant systems. European Food Reserach Technology 220: 472-476.
  • 29. Uras ŞS, Silahtaroğlu S, İlçim A, Kökdil G (2010). Fatty Acid, tocopherol, mineral composition, total phenolic, flavonoid, thymoquinone content, and antioxidant activity of Nigella Sativa L. J. Fac. Pharm 39 (3): 173-186.
  • 30. Vansteenhouse JL (1985). Free radicals: relation to tissue damage-a review. Vet Clin Pathol 16: 29-35.

Erratum: Research on the Antioxidant Efficiacy of Black Seed Essential Oil Using by in vitro Method

Year 2022, Volume: 5 Issue: 2, 124 - 124, 16.05.2022
The original article was published on August 20, 2021. https://dergipark.org.tr/en/pub/avrasyasbd/issue/64541/862336

Erratum Note

Abstract

Medicinal plants such as black seed have antioxidant properties due to their essential oils. In this study, antioxidant
property of particulary black seed (Nigella sativa L.) essential oil containing many bioactive substances such as
thymoquinone, dithymoquinone, timol, nigellon, carvacrol was investigated in vitro with various methods. Total
phenolic substances, DPPH radical removal activity, antioxidant activity with ferric thiocyanate method in linoleic acid
system, chelation activity of Fe+2 ions, superoxide radical removal activity and reduction capacity were determined
by spectrophotometric methods for black seed essential oil. Accordingly, total phenolic substances was 30.5 μg/mL,
1,1-diphenyl-2-picrylhydrazyl (DPPH) radical removal activity was 25.10% inhibition, linoleic acid reduction activity was
23% inhibition, Fe+2 ions reduction activity was 52.33% inhibition, superoxide radical removal activity was 20.63%
inhibition and reduction capacity was 0.66 absorbance for Nigella sativa seed essential oil. In conclusion, considering
their in vitro antioxidant activities, it can be stated that Nigella sativa L. seed essential oil can be evaluated as a
natural and cheap alternative antioxidant in different fields such as human and veterinary medicine.

Project Number

AKU BAPK, Project No: 18.KARİYER.123

References

  • 1. Al-Ghamdi MS. (2001). The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology 76: 45-48.
  • 2. Al-Saleh IA, Billedo G, El-Doush II. (2006), Level of selenium, tocopherol, thymoquinone and thymol of Nigella sativa seed J Food Compos Anal 19:167-175.
  • 3. Badary OA. (1999). Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. Journal of Ethnopharmacology 67:135-142.
  • 4. Blois MS (1958). Antioxidant determinations by the use of stable free radical. Nature 1199-1200.
  • 5. Bulca S. (2015). Çörek otunun bileşenleri ve bu yağın ve diğer bazı uçucu yağların antioksidan olarak gıda teknolojisinde kullanımı. Journal of Adnan Menderes University Agricultural Faculty 11(2):29- 36.
  • 6. Burits M, Bucar F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323-328.
  • 7. Butt AS, Nisar N, Mughal TA, Ghani N, Altaf I (2019). Anti-oxidative and anti-proliferative activities of extracted phytochemical compound thymoquinone. J Pak Med Assoc 69(10):1479-1485.
  • 8. Chen X, Ahn DU (1998). Antioxidant activites of six natural phenolics against lipid oxidation induced by Fe2+ or ultraviolet light. Journal of the American Oil Chemist’s Society 75: 1717-1721.
  • 9. Corpas FJ, Fernandez-Ocana A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodriguez-Serano M, Chaki M, Pedrajas JR, Sandalio LM, Del Rio LA, Barroso JB (2006). The espression of different superoxide dismutase froms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47(7): 984-994.
  • 10. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S (2015). Thymoquinone and its therapeutic potentials. Pharmacol Res 95-96:138-58.
  • 11. Dinis TCP, Madeira VMC, Almeida LM (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) assay inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315(1): 161-169.
  • 12. Ferdous AJ, Islam, SN, Ashan M, Hasan CM, Ahmed ZU. (1992). In vitro antibacterial activity of the volatile oil of Nigella sativa seeds against multiple drug resistant isolates of Shigella, V. Cholerae and E. Coli. Phytother Res 6: 137-140.
  • 13. Halliwell B, Clement MV, Long LH. (2000) Hydrogen peroxide in the human body. FEBS Letter 486: 10-13.
  • 14. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: An overview. In: Methods in Enzymology 186: 1-85.
  • 15. Juntachote T, Berghofer E (2005). Antioxidative properties and stability of ethanolic extracats of holy basil and galangal. Food Chemistry 92: 193-202.
  • 16. Kiralan M (2014). Changes in volatile compounds of black cumin (Nigella Sativa L.) seed oil during thermal oxidation. International Journal of Food Properties 17:1482-1489.
  • 17. Mılıauskas G, Venskutonıs PR, Van Beek TA (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemisrty 85: 231-237.
  • 18. Mohammed NK, Abd Manap MY, Tan CP, Muhialdin BJ, Alhelli AM, Meor Hussin AS (2016). The effects of different extraction methods on antioxidant properties, chemical composition, and thermal behavior of black seed (Nigella sativa L) Oil: Evidence-based complement. Altern. Med pp. 1-10.
  • 19. Onat T, Emerk K, Sözmen EY. İnsan Biyokimyası. 2. Baskı, Palme Yayıncılık, 2006, Ankara.
  • 20. Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. Japan Journal of Nutrition 44: 307-315.
  • 21. Pan Y, Zhang X, Wang H, Liang Y, Zhu J, Li H, Zhang Z, Wu Q (2007). Antioxidant potential of ethanolic extract of Polygonum cuspidatum and application in peanut oil. Food Chemistry 105: 1518-1524.
  • 22. Ramadan MF (2007). Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. International Journal of Food Science and Technology 42(10): 1208-1218.
  • 23. Ramadan MF, Kroh LW, Mörsel JT (2003). Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961-6969.
  • 24. Randhawa MA, Al-Ghamdı MS (2002). A review of the pharmaco-therapeutic effectes of Nigella sativa. Pakistan J Med Res 41(2): 7783. 25. Salem ML (2005). Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharm 5: 1749-1770.
  • 26. Shon MY, Kım TH, Sung NJ (2003). Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chemistry 82: 593-597.
  • 27. Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.
  • 28. Thippeswamy NB, Naidu KA (2005). Antioxidant potency of cumin varieties- cumin, black cumin and bitter cumin-on antioxidant systems. European Food Reserach Technology 220: 472-476.
  • 29. Uras ŞS, Silahtaroğlu S, İlçim A, Kökdil G (2010). Fatty Acid, tocopherol, mineral composition, total phenolic, flavonoid, thymoquinone content, and antioxidant activity of Nigella Sativa L. J. Fac. Pharm 39 (3): 173-186.
  • 30. Vansteenhouse JL (1985). Free radicals: relation to tissue damage-a review. Vet Clin Pathol 16: 29-35.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Gülcan Avcı 0000-0001-8767-4507

Barış Denk

Aziz Bülbül 0000-0003-0995-3986

Project Number AKU BAPK, Project No: 18.KARİYER.123
Publication Date May 16, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Avcı, G., Denk, B., & Bülbül, A. (2022). Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması. Avrasya Sağlık Bilimleri Dergisi, 5(2), 124-124.
AMA Avcı G, Denk B, Bülbül A. Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması. EurasianJHS. May 2022;5(2):124-124.
Chicago Avcı, Gülcan, Barış Denk, and Aziz Bülbül. “Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in Vitro Yöntemlerle Araştırılması”. Avrasya Sağlık Bilimleri Dergisi 5, no. 2 (May 2022): 124-24.
EndNote Avcı G, Denk B, Bülbül A (May 1, 2022) Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması. Avrasya Sağlık Bilimleri Dergisi 5 2 124–124.
IEEE G. Avcı, B. Denk, and A. Bülbül, “Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması”, EurasianJHS, vol. 5, no. 2, pp. 124–124, 2022.
ISNAD Avcı, Gülcan et al. “Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in Vitro Yöntemlerle Araştırılması”. Avrasya Sağlık Bilimleri Dergisi 5/2 (May 2022), 124-124.
JAMA Avcı G, Denk B, Bülbül A. Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması. EurasianJHS. 2022;5:124–124.
MLA Avcı, Gülcan et al. “Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in Vitro Yöntemlerle Araştırılması”. Avrasya Sağlık Bilimleri Dergisi, vol. 5, no. 2, 2022, pp. 124-.
Vancouver Avcı G, Denk B, Bülbül A. Çörek Otu Tohumu Esansiyel Yağının Antioksidan Etkinliğinin in vitro Yöntemlerle Araştırılması. EurasianJHS. 2022;5(2):124-.