Research Article
BibTex RIS Cite

Kayısı kurutulmasında mikrobiyal yükün azaltılmasında potansiyel uygulama: Ultraviyole C (UVC) + Sıcak hava kurutma

Year 2022, Volume: 11 Issue: 1, 155 - 164, 31.07.2022
https://doi.org/10.29278/azd.904952

Abstract

Amaç: Bu çalışmada ultraviyole ışık ve sıcak havayla kurutma uygulamalarının üç farklı kayısı çeşidindeki (Prunus armenica L., var. Hacıhaliloğlu, Prunus armenica L., var. Kabaaşı, Prunus armenica L., var. Şekerpare) yüzey mikroorganizma yüküne (psikrofilik ve mezofilik aerobik bakteriler, maya ve küf) etkileri araştırılmıştır. Materyal ve Yöntem: Ultraviyole ışık ortalama doz oranı 6.70 W/m2 ve ışıma maruziyeti (dozaj) 2.01 kJ/m2 olarak uygulanmıştır. Kurutma 70 °C de kayısıların nem içeriği %19’a düşünceye kadar yapılmıştır. Araştırma Bulguları: Çalışma sonucunda Şekerpare çeşidinin diğer iki kayısı çeşidine göre başlangıç mikrobiyal yükünün açıkça daha yüksek olduğu görülmüştür. Ultraviyole ışık ve sıcak hava ile kurutma uygulamaları kayısıların yüzeyinde bulunan doğal mikroflorayı azaltmıştır. Bu azalma, sıcak hava ile kurutma uygulaması için sadece Şekerpare çeşidinde önemli bulunmuştur. Ultraviyole ışık uygulamasının etkisi maya ve küf açısından tüm çeşitlerde önemsizken, mezofilik ve psikrofilik aerobik bakteriler için sadece Şekerpare çeşidinde, toplam mikrobiyal yük için ise Şekerpare ve Hacıhaliloğlu çeşidinde önemli olmuştur. Ultraviyole ışık ve ardından sıcak hava ile kurutma uygulanması durumunda ise meydana gelen azalma mezofilik aerobik bakteriler ile maya ve küf sayıları açısından Şekerpare çeşidinde, psikrofilik aerobik bakteri sayıları ve toplam mikrobiyal yük açısından ise tüm çeşitlerde önemli bulunmuştur. Sonuç: En etkili yöntem UVC ve sıcak hava ile kurutma uygulamasının birlikte uygulanması olduğu sonucuna varılmıştır. Bu yöntemlerin ayrı ayrı kullanılması durumunda etkinlik sırasının değiştiği ve yapılan uygulamaların en fazla psikrofilik aerobik bakteri sayınının azaltılmasında etkili olduğu da tespit edilmiştir.

Supporting Institution

Kocaeli üniversitesi

Project Number

FYL-2020-2158

References

  • Aarrouf, J., Urban, L. (2020). Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS ONE, 15(7 July), 1–16. doi:10.1371/journal.pone.0235918
  • Barata, A., Malfeito-Ferreira, M., Loureiro, V. (2012). The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153(3), 243–259. doi:10.1016/j.ijfoodmicro.2011.11.025
  • Barbosa-Cánovas, G. V., Vega-Mercado, H. (1996). Cabinet and Bed Dryers. Dehydration of Foods, 157–184. doi:10.1007/978-1-4757-2456-1_5
  • Barth, M., Hankinson, T.R., Zhuang, H., Breidt, F. (2009). Microbiological Spoilage of Fruits and Vegetables. Sperber, W.H., Doyle, M.P. (eds.), Compendium of the Food Microbiology and Food Safety
  • Begum, M., Hocking, A. D., Miskelly, D. (2009). Inactivation of food spoilage fungi by ultraviolet (UVC) irradiation. International Journal of Food Microbiology, 129(1), 74–77. doi:10.1016/j.ijfoodmicro.2008.11.020
  • Ben Said, M., Masahiro, O., Hassen, A. (2010). Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Annals of Microbiology, 60(1), 121–127. doi:10.1007/s13213-010-0017-4
  • Civello, P. M., Vicente, A. R., Martínez, G. A. (2006). UV-C technology to control postharvest diseases of fruits and vegetables. Recent Advances in Alternative Postharvest Technologies to Control Fungal Diseases in Fruits & Vegetables (C. 37).
  • Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. doi:10.1016/j.postharvbio.2013.03.009
  • Dai, T., Vrahas, M. S., Murray, C. K., Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2), 185–195. doi:10.1586/eri.11.166
  • Droby, S., Wisniewski, M. (2018). The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 140 (March), 107–112. doi:10.1016/j.postharvbio.2018.03.004
  • Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. doi:10.1080/10408398.2017.1417235
  • Durmaz, G., Çam, M., Kutlu, T., Hışıl, Y. (2010) Some Physical and Chemical Changes during Fruit Development of Five Common Apricot (Prunus armeniaca L.) Cultivars. Food Science and Technology Research, 16 (1), 71–78.
  • Fan, Xinguang, Zhao, H., Wang, X., Cao, J., Jiang, W. (2017). Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Scientia Horticulturae, 225(July), 553–560. doi:10.1016/j.scienta.2017.07.016
  • Fan, Xuetong, Huang, R., Chen, H. (2017). Application of ultraviolet C technology for surface decontamination of fresh produce. Trends in Food Science and Technology, 70 (September), 9–19. doi:10.1016/j.tifs.2017.10.004
  • FAOSTAT (2021). http://www.fao.org/faostat/en/#data/QC (Erişim tarihi : 19 Ocak 2021)
  • FDA (2020). Code of Federal Regulations Title 21 Food and drugs. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=880.6600 (Erişim tarihi: 19 Ocak 2021)
  • Hakguder Taze, B., Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233(August 2017), 370–377. doi:10.1016/j.scienta.2018.02.012
  • Igual, M., García-Martínez, E., Martín-Esparza, M. E., Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47(2), 284–290. doi:10.1016/j.foodres.2011.07.019
  • Jiménez, A. M., Martínez-Tomé, M., Egea, I., Romojaro, F., Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). European Food Research and Technology, 227(1), 125–134. doi:10.1007/s00217-007-0701-1
  • Karabulut, I., Topcu, A., Duran, A., Turan, S., Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.). LWT - Food Science and Technology, 40(5), 753–758. doi:10.1016/j.lwt.2006.05.001
  • Karathanos, V. T., Belessiotis, V. G. (1997). Sun and artificial air drying kinetics of some agricultural products. Journal of Food Engineering, 31(1), 35–46. doi:10.1016/S0260-8774(96)00050-7
  • Keyser, M., Muller, I. A., Cilliers, F. P., Nel, W., Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies, 9(3), 348–354. doi:10.1016/j.ifset.2007.09.002
  • Kramer, B., Muranyi, P. (2014). Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. Journal of Applied Microbiology, 116(3), 596–611. doi:10.1111/jam.12394
  • Liu, B., Jiao, W., Wang, B., Shen, J., Zhao, H., Jiang, W. (2019). Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life. Scientia Horticulturae, 249(July 2018), 100–109. doi:10.1016/j.scienta.2019.01.048
  • Lüle, F., Koyuncu, T. (2015). Convective and Microwave Drying Characteristics of Sorbus Fruits (Sorbus domestica L.). Procedia - Social and Behavioral Sciences, 195, 2634–2643. doi:10.1016/j.sbspro.2015.06.467
  • Özelçi, M., Aslantaş, R., Özelçi, D., Çöçen, E. (2021) ‘Hacıhaliloğlu’ Kayısı Çeşidinde Meyve Gelişimi Sırasındaki Fiziksel ve Kimyasal Değişimlerin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi 8(1): 58–65.
  • Sharma, R. R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. doi:10.1016/j.biocontrol.2009.05.001
  • Srepong, K., Jitareerat, P., Uthairatanakij, A., Srilaong, V., Wongs-Aree, C., Tsuyumu, S. (2013). Induction of defense mechanisms on harvested mangoes by UV-C irradiation. Acta Horticulturae, 973(March 2016), 89–96. doi:10.17660/actahortic.2013.973.10
  • TEPGE (2019). Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, Kayısı. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF Tarım Ürünleri Piyasaları/2019-Temmuz Tarım Ürünleri Raporu/2019-Temmuz Kayısı.pdf (Erişim tarihi: 19 Ocak 2021)
  • Toǧrul, I. T., Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23–32. doi:10.1016/S0260-8774(02)00329-1
  • Türkyılmaz, M., Tağı, Ş., Özkan, M., Öztürk, K., Öztürk, B. (2013). Chemical and microbial differences in dried apricots containing sulphur dioxide at different levels. Gıda /the Journal of Food, 38(5), 275–282. doi:10.5505/gida.2013.32032
  • Ubeyitoğulları, A., Çekmecelioğlu, D. (2016). Optimization of Hemicellulose Coating as Applied to Apricot Drying and Comparison with Chitosan Coating and Sulfite Treatment. Journal of Food Process Engineering, 39(6), 542–552. doi:10.1111/jfpe.12247
  • Usall, J., Ippolito, A., Sisquella, M., Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122(2015), 30–40. doi:10.1016/j.postharvbio.2016.05.002
  • Villarino, A., Rager, M. N., Grimont, P. A. D., Bouvet, O. M. M. (2003). Are UV-induced nonculturable Escherichia coli K-12 cells alive or dead? European Journal of Biochemistry, 270(12), 2689–2695. doi:10.1046/j.1432-1033.2003.03652.x
  • WHO (2020) Internationally peer reviewed chemical safety information. http://www.inchem.org/documents/jecfa/jecmono/v21je15.htm (Erişim tarihi: 28 Aralık 2020)
  • Yan, R., Liu, Y., Gurtler, J. B., Killinger, K., Fan, X. (2017). Sensitivity of pathogenic and attenuated E. coli O157:H7 strains to ultraviolet-C light as assessed by conventional plating methods and ethidium monoazide-PCR. Journal of Food Safety, 37(4). doi:10.1111/jfs.12346
  • Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llácer, G. (2012). Apricot. Badenes, M.L. and Byrne, D.H. (eds.), Fruit breeding, Handbook of Plant Breeding 8. doi:10.1007/978-1-4419-0763-9

A potential application on reducing microorganism load in apricot drying: Ultraviolet C (UVC) + Hot air drying

Year 2022, Volume: 11 Issue: 1, 155 - 164, 31.07.2022
https://doi.org/10.29278/azd.904952

Abstract

Objective: In this study, the effects of ultraviolet light and hot air drying applications on surface microbial load (psychrophilic and mesophilic aerobic bacteria, yeast and mold) of three different apricot varieties (Prunus armenica L., var. Hacıhaliloğlu, Prunus armenica L., var. Kabaaşı, Prunus armenica L., var. Şekerpare) investigated. Materials and Methods: The average ultraviolet light dose rate was 6.70 W/m2 and the radiation exposure (dosage) was 2.01 kJ/m2. Drying was carried out at 70 °C until the moisture content of apricots decreased to 19%. Results: As a result of the study, it was observed that the initial microbial load of Şekerpare variety was clearly higher than the other two apricot varieties. Ultraviolet light and hot air drying applications reduced the natural microflora on the surface of apricots. This reduction was found to be significant only in Şekerpare variety for hot air drying application. While the effect of ultraviolet light application was insignificant in terms of yeast and mold in all varieties, it was important for mesophilic and psychrophilic aerobic bacteria only in Şekerpare variety, and for total microbial load in Şekerpare and Hacıhaliloğlu varieties. In the case of application of ultraviolet light and subsequent hot air drying, the decrease in the number of mesophilic aerobic bacteria, yeast and mold was found to be significant in Şekerpare variety, and in all varieties in terms of psychrophilic aerobic bacteria numbers and total microbial load. Conclusion: The most effective method is to apply UVC and hot air drying application together. It has also been determined that the order of activity changes when these methods are used separately, and the applications are most effective in reducing the number of psychrophilic aerobic bacteria.

Project Number

FYL-2020-2158

References

  • Aarrouf, J., Urban, L. (2020). Flashes of UV-C light: An innovative method for stimulating plant defences. PLoS ONE, 15(7 July), 1–16. doi:10.1371/journal.pone.0235918
  • Barata, A., Malfeito-Ferreira, M., Loureiro, V. (2012). The microbial ecology of wine grape berries. International Journal of Food Microbiology, 153(3), 243–259. doi:10.1016/j.ijfoodmicro.2011.11.025
  • Barbosa-Cánovas, G. V., Vega-Mercado, H. (1996). Cabinet and Bed Dryers. Dehydration of Foods, 157–184. doi:10.1007/978-1-4757-2456-1_5
  • Barth, M., Hankinson, T.R., Zhuang, H., Breidt, F. (2009). Microbiological Spoilage of Fruits and Vegetables. Sperber, W.H., Doyle, M.P. (eds.), Compendium of the Food Microbiology and Food Safety
  • Begum, M., Hocking, A. D., Miskelly, D. (2009). Inactivation of food spoilage fungi by ultraviolet (UVC) irradiation. International Journal of Food Microbiology, 129(1), 74–77. doi:10.1016/j.ijfoodmicro.2008.11.020
  • Ben Said, M., Masahiro, O., Hassen, A. (2010). Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Annals of Microbiology, 60(1), 121–127. doi:10.1007/s13213-010-0017-4
  • Civello, P. M., Vicente, A. R., Martínez, G. A. (2006). UV-C technology to control postharvest diseases of fruits and vegetables. Recent Advances in Alternative Postharvest Technologies to Control Fungal Diseases in Fruits & Vegetables (C. 37).
  • Cote, S., Rodoni, L., Miceli, E., Concellón, A., Civello, P. M., Vicente, A. R. (2013). Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biology and Technology, 83, 83–89. doi:10.1016/j.postharvbio.2013.03.009
  • Dai, T., Vrahas, M. S., Murray, C. K., Hamblin, M. R. (2012). Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Review of Anti-Infective Therapy, 10(2), 185–195. doi:10.1586/eri.11.166
  • Droby, S., Wisniewski, M. (2018). The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 140 (March), 107–112. doi:10.1016/j.postharvbio.2018.03.004
  • Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. doi:10.1080/10408398.2017.1417235
  • Durmaz, G., Çam, M., Kutlu, T., Hışıl, Y. (2010) Some Physical and Chemical Changes during Fruit Development of Five Common Apricot (Prunus armeniaca L.) Cultivars. Food Science and Technology Research, 16 (1), 71–78.
  • Fan, Xinguang, Zhao, H., Wang, X., Cao, J., Jiang, W. (2017). Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction. Scientia Horticulturae, 225(July), 553–560. doi:10.1016/j.scienta.2017.07.016
  • Fan, Xuetong, Huang, R., Chen, H. (2017). Application of ultraviolet C technology for surface decontamination of fresh produce. Trends in Food Science and Technology, 70 (September), 9–19. doi:10.1016/j.tifs.2017.10.004
  • FAOSTAT (2021). http://www.fao.org/faostat/en/#data/QC (Erişim tarihi : 19 Ocak 2021)
  • FDA (2020). Code of Federal Regulations Title 21 Food and drugs. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=880.6600 (Erişim tarihi: 19 Ocak 2021)
  • Hakguder Taze, B., Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233(August 2017), 370–377. doi:10.1016/j.scienta.2018.02.012
  • Igual, M., García-Martínez, E., Martín-Esparza, M. E., Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47(2), 284–290. doi:10.1016/j.foodres.2011.07.019
  • Jiménez, A. M., Martínez-Tomé, M., Egea, I., Romojaro, F., Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot (Prunus armeniaca v. bulida). European Food Research and Technology, 227(1), 125–134. doi:10.1007/s00217-007-0701-1
  • Karabulut, I., Topcu, A., Duran, A., Turan, S., Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armenica L.). LWT - Food Science and Technology, 40(5), 753–758. doi:10.1016/j.lwt.2006.05.001
  • Karathanos, V. T., Belessiotis, V. G. (1997). Sun and artificial air drying kinetics of some agricultural products. Journal of Food Engineering, 31(1), 35–46. doi:10.1016/S0260-8774(96)00050-7
  • Keyser, M., Muller, I. A., Cilliers, F. P., Nel, W., Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies, 9(3), 348–354. doi:10.1016/j.ifset.2007.09.002
  • Kramer, B., Muranyi, P. (2014). Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. Journal of Applied Microbiology, 116(3), 596–611. doi:10.1111/jam.12394
  • Liu, B., Jiao, W., Wang, B., Shen, J., Zhao, H., Jiang, W. (2019). Near freezing point storage compared with conventional low temperature storage on apricot fruit flavor quality (volatile, sugar, organic acid) promotion during storage and related shelf life. Scientia Horticulturae, 249(July 2018), 100–109. doi:10.1016/j.scienta.2019.01.048
  • Lüle, F., Koyuncu, T. (2015). Convective and Microwave Drying Characteristics of Sorbus Fruits (Sorbus domestica L.). Procedia - Social and Behavioral Sciences, 195, 2634–2643. doi:10.1016/j.sbspro.2015.06.467
  • Özelçi, M., Aslantaş, R., Özelçi, D., Çöçen, E. (2021) ‘Hacıhaliloğlu’ Kayısı Çeşidinde Meyve Gelişimi Sırasındaki Fiziksel ve Kimyasal Değişimlerin Belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi 8(1): 58–65.
  • Sharma, R. R., Singh, D., Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. doi:10.1016/j.biocontrol.2009.05.001
  • Srepong, K., Jitareerat, P., Uthairatanakij, A., Srilaong, V., Wongs-Aree, C., Tsuyumu, S. (2013). Induction of defense mechanisms on harvested mangoes by UV-C irradiation. Acta Horticulturae, 973(March 2016), 89–96. doi:10.17660/actahortic.2013.973.10
  • TEPGE (2019). Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü, Kayısı. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF Tarım Ürünleri Piyasaları/2019-Temmuz Tarım Ürünleri Raporu/2019-Temmuz Kayısı.pdf (Erişim tarihi: 19 Ocak 2021)
  • Toǧrul, I. T., Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23–32. doi:10.1016/S0260-8774(02)00329-1
  • Türkyılmaz, M., Tağı, Ş., Özkan, M., Öztürk, K., Öztürk, B. (2013). Chemical and microbial differences in dried apricots containing sulphur dioxide at different levels. Gıda /the Journal of Food, 38(5), 275–282. doi:10.5505/gida.2013.32032
  • Ubeyitoğulları, A., Çekmecelioğlu, D. (2016). Optimization of Hemicellulose Coating as Applied to Apricot Drying and Comparison with Chitosan Coating and Sulfite Treatment. Journal of Food Process Engineering, 39(6), 542–552. doi:10.1111/jfpe.12247
  • Usall, J., Ippolito, A., Sisquella, M., Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122(2015), 30–40. doi:10.1016/j.postharvbio.2016.05.002
  • Villarino, A., Rager, M. N., Grimont, P. A. D., Bouvet, O. M. M. (2003). Are UV-induced nonculturable Escherichia coli K-12 cells alive or dead? European Journal of Biochemistry, 270(12), 2689–2695. doi:10.1046/j.1432-1033.2003.03652.x
  • WHO (2020) Internationally peer reviewed chemical safety information. http://www.inchem.org/documents/jecfa/jecmono/v21je15.htm (Erişim tarihi: 28 Aralık 2020)
  • Yan, R., Liu, Y., Gurtler, J. B., Killinger, K., Fan, X. (2017). Sensitivity of pathogenic and attenuated E. coli O157:H7 strains to ultraviolet-C light as assessed by conventional plating methods and ethidium monoazide-PCR. Journal of Food Safety, 37(4). doi:10.1111/jfs.12346
  • Zhebentyayeva, T., Ledbetter, C., Burgos, L., Llácer, G. (2012). Apricot. Badenes, M.L. and Byrne, D.H. (eds.), Fruit breeding, Handbook of Plant Breeding 8. doi:10.1007/978-1-4419-0763-9
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Makaleler
Authors

Gülsüm Ebru Özer Uyar 0000-0001-7164-0222

Ceylan Koçkan 0000-0003-3297-0418

Project Number FYL-2020-2158
Publication Date July 31, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Özer Uyar, G. E., & Koçkan, C. (2022). Kayısı kurutulmasında mikrobiyal yükün azaltılmasında potansiyel uygulama: Ultraviyole C (UVC) + Sıcak hava kurutma. Akademik Ziraat Dergisi, 11(1), 155-164. https://doi.org/10.29278/azd.904952