Research Article
BibTex RIS Cite

The Effect of Abiotic and Biotic Stresses on Distinct Seed Characteristics in Cabernet Sauvignon and Merlot Grape Varieties

Year 2024, , 11 - 20, 29.05.2024
https://doi.org/10.53471/bahce.1427915

Abstract

Like all plants on Earth, grapevines also encounter various biotic and abiotic stress factors during cultivation. Phenolic compounds that emerge as secondary metabolites in grapes are, in fact, cellular defense mechanisms against abiotic and biotic stress factors. On the other hand, an increase in the production of secondary metabolites is also a desirable condition for quality. As known, when the phenolic component content of grape berries is proportionally ranked, more than half of it comes from the seeds; grape seeds are also significant bioactive compounds. In this study, clusters harvested from Cabernet Sauvignon and Merlot grapevine shoots subjected to seven different abiotic and biotic stress applications (Control, Botrytis cinerea, impact, leaf removal, leaf injury, UV-C, vibration) were examined. In the seeds, measurements were taken for the number of seeds per berry, seed fresh and dry weight, berry fresh weight-seed fresh weight, berry dry weight-seed dry weight, seed ratio (fresh-dry), seed moisture content, 1 seed fresh and dry weight. Although some variety-related differences were observed in the examined criteria, there was no significant difference when considering the applications. From this, it was understood that abiotic stresses such as UV-C, impact, vibration, and complete leaf removal, which could potentially cause permanent damage to the grapevines, did not have a negative effect on characteristics such as budbreak, cluster initiation, cluster yield, and seed structure in the following year (2017). It was concluded that these results are important in seeing that these abiotic stresses did not negatively affect seed characteristics, and it can be inferred that such practices can be carried out when needed to increase secondary metabolite production.

References

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai P., Pirani A., Connors, S.L., Péan, C., Berger, S., et al. (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, https://doi.org/10.1017/9781009157896.
  • Adão, F., J.C. Campos, J.A. Santos, A.C. Malheiro, H. Fraga 2023. Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls. 2023.974020.
  • Jones, G.V., White, M.A., Cooper, O.R., Storchmann, K., 2005. Climate change and global wine quality. Climatic Change 73(3):319-343. https://doi.org/10.1007/s10584-005-4704-2.
  • Agostinelli, F., Caldeira, I., Ricardo-da-Silva, J.M., Damásio, M., Egipto, R., Silvestre, J., 2023. First approach to the aroma characterization of monovarietal red wines produced from varieties better adapted to abiotic stresses. Plants 12(10): 2063. https://doi.org/10.3390/plants12102063.
  • Aguirre-Becerra, H., Vazquez-Hernandez, M.C., Alvarado-Mariana, A., Guevara-Gonzalez, R.G., Garcia-Trejo, J.F., Feregrino-Perez, A.A., 2021. Role of stress and defense in plant secondary metabolites production. In: Pal, D., Nayak, A.K. (eds) Bioactive Natural Products for Pharmaceutical Applications. Advanced Structured Materials, Vol.140. Springer, Cham. https://doi.org/10.1007/978-3-030-54027-2_5.
  • Darriaut, R., Lailheugue, V., Masneuf-Pomarède, I., Marguerit, E., Martins, G., Compant, S., Ballestra, P., Upton, S., Ollat, N., Lauvergeat, V., 2022. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Horticultural Research, 9: uhac019. https://doi. org/10.1093/hr/uhac019.
  • Biasi, R., E. Brunori, S. Vanino, A. Bernardini, A. Catalani, R. Farina, A. Bruno, G. Chilosi 2023. Soil-plant interaction mediated by indigenous AMF in grafted and own-rooted grapevines under field conditions. Agriculture 13(5):1051. https://doi.org/10.3390/agriculture13 051051.
  • Pool, R., Wolf, T., Welser, M.J., Goffinet, M.C., 1992. Environmental factors affecting dormant bud cold acclimation of three Vitis cultivars. In Proceedings of the 4. International Symposium on Grapevine Physiology, pp:11-15.
  • Roby, G., Harbertson, J.F., Adams, D.A., Matthews, M.A., 2004. Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2):100-107. https:// doi.org/10.1111/j.1755-0238.2004.tb00012.x.
  • Aleynova, O.A., Kiselev, K.V., 2023-a. Interaction of plants and endophytic microorganisms: molecular aspects, biological functions, community composition, and practical applications. Plants, 12(4):714. https://doi.org/10. 3390/plants12040714.
  • Aleynova, O.A., Nityagovsky, N.N., Ananev, A.A., Suprun, A.R., Ogneva, Z.V., Dneprovskaya, A.A., Beresh, A.A., Dubrovina, A.S., Chebukin, P.A., Kiselev, K.V., 2023-b. Bacterial and fungal endophytes of grapevine cultivars growing in Primorsky Krai of Russia. Horticulturae, 9:1257. https://doi.org/10.3390/horticulturae9121257.
  • Aguilera, P., Ortiz, N., Becerra, N., Turrini, A., Gaínza-Cortés, F., Silva-Flores, P., Aguilar-Paredes, A., Romero, J.K., Jorquera-Fontena, E., Mora, Md. L.L., Borie, F., 2022 Application of Arbuscular Mycorrhizal Fungi in vineyards: Water and biotic stress under a climate change scenario: new challenge for Chilean grapevine crop. Front. Microbiol. 13:826571. https://doi. org/10.3389/fmicb.2022.826571
  • Lin, L., Wu, J., Ho, K.P., Qi, S., 2001. Ultrasound-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound in Medicine & Biology, 27(8):1147-1152. https://doi.org/10.1016/S0301-5629(01)00412-4.
  • Jung, H. M., Lee, S., Lee, W.H., Cho, B.K., Lee, S.H., 2018. Effect of vibration stress on quality of packaged grapes during transportation. Engineering in Agriculture, Environment and Food, 11(2):79-83. https://doi.org/10.1016/j.eaef. 2018.02.007.
  • Xiao, Y.M., Wu, Q., Cai, Y., Lin, X.F., 2005. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydrate Research, 340(13):2097-2103. https://doi.org/10. 1016/j.carres.2005.06.027.
  • Hasan, M.M., Baek, K.H., 2013. Induction of resveratrol biosynthesis in grape skins and leaves by ultrasonication treatment. Horticultural Science&Technology, 31(4):496-502. https://doi. org/10.7235/hort.2013.12229.
  • Mikami, M., Mori, D., Masumura, Y., Aoki, Y., Suzuki, S., 2017. Electrical stimulation: An abiotic stress generator for enhancing anthocyanin and resveratrol accumulation in grape berry. Scientia Horticulturae, 226:285-292. https://doi. org/10.1016/j.scienta.2017.09.005.
  • Billet, K., Houillé, B., Besseau, S., Mélin, C., Oudin, A., Papon, N., Lanoue, A., 2018. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned by product. Food Chemistry, 240, 1022-1027. https://doi.org/10. 1016/j.foodchem.2017.07.105.
  • Langcake, P., Pryce, R. J. 1977. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16(8):1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9.
  • Creasy, L.L., Coffee, M., 1988. Phytoalexin production potential of grape berries. Journal of the American Society for Horticultural Science 113(2):230-234. https://doi.org/10.21273/jashs. 113.2.230.
  • Nigro, F., Ippolito, A., Lima, G., 1998. Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3):171-181. https://doi.org/10.1016/s0925-521 4(98)00009-x.
  • Bahar, E., Korkutal, İ., Tok Abay, C., 2023. Bağcılık Çalışmaları: Geleneksel ve Modern Yaklaşımlar, Bölüm 2: Asmalara geç dönemde uygulanan abiyotik ve biyotik streslerin salkım özelliklerine etkileri. İksad Publications, Ankara. 244s. ISBN:978-625-367-558-5. https://dx.doi. org/10.5281/zenodo.10444909.
  • Akın, A., Altındişli, A. 2010. Emir, Gök Üzüm ve Kara Dimrit üzüm çeşitlerinin çekirdek yağlarının yağ asidi kompozisyonu ve fenolik madde içeriklerinin belirlenmesi. Akademik Gıda, 8(6):19-23.
  • Göktürk Baydar, N., Babalık, Z., Hallaç Türk, F., Çetin, E.S., 2011. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. Tarım Bilimleri Dergisi, 17: 67-76.
  • Sochorova, L., Prusova, B., Jurikova, T., Mlcek, J., Adamkova, A., Baron, M., Sochor, J., 2020. The study of antioxidant components in grape seeds. Molecules, 25:3736. https://doi.org/10. 3390/molecules25163736.
  • Chengolova, Z., Ivanov, Y., Godjevargova, T. 2023. Comparison of identification and quantification of polyphenolic compounds in skins and seeds of four grape varieties. Molecules 28:4061. https://doi.org/10.3390/molecules28104 061.
  • Yıkmış, S., Demir, E., 2023. Üzüm çekirdeğinin fonksiyonel etkileri. 1. International Conference on Trends in Advanced Research, March 4-7, 2023: Konya, Turkey.
  • Kunter, B., Cantürk, S., Keskin, N., 2013. Üzüm tanesinin histokimyasal yapısı. Iğdır Üniversitesi, Fen Bilimleri Enstitüsü Dergisi 3(2):17-24.
  • Tahmaz, H., Söylemezoğlu, G., 2019. Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe 48(1):39-48.
  • Aras Aşcı, Ö. 2020. Sağlıklı yaşamda üzüm ve üzüm ürünleri. Bilge International Journal of Science and Technology Research 4(Special Issue):22-32.
  • Jurasova, L., Jurikova, T., Baron, M., Sochor, J., 2023. Content of selected polyphenolic substances in parts of grapevine. Italian Journal of Food Science, 35(3):17-43. https://doi.org/10.15586/ ijfs.v35i3.2298.
  • Sevindik, O., Selli, S., 2016. Üzüm çekirdeklerinin temel biyoaktif bileşenleri. Çukurova Tarım Gıda Bilimleri Dergisi 31(2):9-16.
  • Zhou, D.D., Li, J., Xiong, R.G., Saimaiti, A., Huang, S.Y., Wu, S.X., Yang, Z.J., Shang, A., Zhao, C. N., Gan, R. Y., et al. 2022. Bioactive compounds, health benefits and food applications of grape. Foods, 11:2755. https://doi.org/10. 3390/foods11182755.
  • Konuk, D., Koreli, F., 2015. Kurutma sıcaklığının üzüm çekirdeklerinin toplam fenolik madde içeriği ve antioksidan kapasitesi üzerine etkisi. Pamukkale Üniversitesi Mühendislik Bilim Dergisi 21(9):404-407.
  • Rao, P.U. 1994. Nutrient composition of some less-familiar oil seeds. Food Chemistry 50(4):379-382. https://doi.org/10.1016/0308-8146(94)90208 -9.
  • Davidov-Pardo, G., Arozarena, I., Navarro, M., Marin-Arroyo, M. R. 2015. Chapter 18-Microencapsulation of grape seed extracts, Editor(s): Leonard M.C. Sagis, Microencapsulation and Microspheres for Food Applications, Academic Press, pp:351-368. ISBN: 9780128003503, https://doi.org/10.1016/b978-0-12-800350-3.00023-6.
  • Georgiev, V., Ananga A., Tsolova, V., 2014. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6:391-415. https://doi. org/10.3390/nu6010391.
  • Poni, S., Bernizzoni, F., Civardi, S., Libelli, N., 2009. Effects of pre‐bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Australian Journal of Grape and Wine Research, 15(2):185-193. https://doi.org/10.1111/j.1755-0238.2008.00 044.x.
  • Candar, S., 2023. Understanding the impact of artificial stress on the morphological characteristics of cv. Merlot berry and cluster. Erwerbs-Obstbau, 01002-7. https://doi.org/10.10 07/s10341-023-01002-7.
  • Candar, S., 2022. Effects of mechanically induced abiotic stress on berry and cluster physical properties of cv. Cabernet-Sauvignon grape variety. Cukurova 8. International Scientific Researches Conference, Adana, 15-17 April. Full Texts Book, 1:1028-1037, ISBN 9786258377514.
  • Kamiloğlu, Ö., Üstün, G., 2014. Bazı şaraplık üzüm çeşitlerinin hasat sonrası kalite özellikleri. Türk Tarım ve Doğa Bilimleri Dergisi, 1(3):361-368.
  • Meteoroloji Genel Müdürlüğü (MGM), 2017. Tekirdağ ili genel istatistik verileri. https://www. mgm.gov.tr/veridegerlendirme/il-ve-ilceler. (Erişim Tarihi: 13.11.2017).
  • Duchêne, E., Schneider, C., 2005. Grapevine and climatic changes: A glance at the situation in Alsace. Agronomy for Sustainable Development 25(1):93-99 https://doi.org/10.1051/agro:2004057
  • Sigler, J., Freiburg, S.W., 2008. In den Zeiten des Klimawandels: Von der Süßreserve zur Sauerreserve? Der Badische Winzer, 33:21-25.
  • Çelik, H., 2006. Üzüm Çeşit Kataloğu. Sunfidan A.Ş. Mesleki Kitaplar Serisi: 3, Ankara, 165s.
  • Yeşilyurt Er, A., Altındişli, A., 2010. Bornova Misketi ve Cabernet-Sauvignon üzüm çeşitlerinde organik ve konvansiyonel yetiştiriciliğin asmanın gelişimine, üzüm ve şarap kalitesine etkisi. Türkiye 4. Organik Tarım Sempozyumu, 28 Haziran-1 Temmuz, Erzurum, Türkiye.
  • OIV, 2009. 2. Edition of the OIV descriptor list for grape varieties and Vitis species. OIV, Paris, France. pp:232.

Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi

Year 2024, , 11 - 20, 29.05.2024
https://doi.org/10.53471/bahce.1427915

Abstract

Dünya üzerindeki tüm bitkiler gibi asmalar da yetiştirilirken bir çok biyotik ve abiyotik stres unsurlarıyla karşılaşmaktadır. Asmalarda sekonder metabolizma ürünü olarak ortaya çıkan fenolik bileşikler; aslında abiyotik ve biyotik stres faktörlerine karşı hücresel düzeyde kendini savunma mekanizmasıdır. Diğer yandan sekonder metabolit üretimi artışı da kalite için istenen bir durumdur. Bilindiği üzere üzüm tanesinin fenolik bileşen içeriği oransal olarak sıralandığında bunun yarısından fazlası çekirdekten gelmektedir; üzüm çekirdeği de önemli bir biyoaktif bileşendir. Bu araştırmada yedi farklı abiyotik ve biyotik stres uygulamasına (Kontrol, Botrytis cinerea, darbe, yaprak alma, yaprak yaralama, UV-C, vibrasyon) tabi tutulan Cabernet Sauvignon ve Merlot üzüm çeşidi omcalarından hasat edilen salkımların içindeki çekirdekler incelenmiştir. Çekirdeklerde; tanedeki çekirdek sayısı, çekirdek yaş ve kuru ağırlığı, tane yaş ağırlığı-çekirdek yaş ağırlığı, tane kuru ağırlığı-çekirdek kuru ağırlığı, çekirdek oranı (yaş-kuru), çekirdek su oranı, 1 çekirdek yaş ağırlığı ve 1 çekirdek kuru ağırlığı ölçümleri yapılmıştır. İncelenen kriterlerde, çeşit kaynaklı bazı farklılıkların görüldüğü ancak uygulamalar dikkate alındığında belirgin bir farklılık olmadığı anlaşılmıştır. Buradan hareketle omcalar için bazıları omcaya kalıcı hasar verebilecek olan UV-C, darbe, vibrasyon ve tüm yaprakları alma gibi abiyotik streslerin sonraki yılın (2017) göz uyanması, salkım doğuşu, salkım verimi, çekirdek yapısı gibi özelliklere olumusz bir etkisi olmadığını görmek bakımndan önemli sonuçlar elde edilmiştir. Sekonder metabolit üretimini artırmak amacıyla gerçekleştirilen abiyotik ve biyotik streslerin çekirdek özelliklerini negatif etkilemediği belirlendiğinden, gerektiğinde bu uygulamaların yapılabileceği sonucuna varılmıştır.

References

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai P., Pirani A., Connors, S.L., Péan, C., Berger, S., et al. (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, https://doi.org/10.1017/9781009157896.
  • Adão, F., J.C. Campos, J.A. Santos, A.C. Malheiro, H. Fraga 2023. Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls. 2023.974020.
  • Jones, G.V., White, M.A., Cooper, O.R., Storchmann, K., 2005. Climate change and global wine quality. Climatic Change 73(3):319-343. https://doi.org/10.1007/s10584-005-4704-2.
  • Agostinelli, F., Caldeira, I., Ricardo-da-Silva, J.M., Damásio, M., Egipto, R., Silvestre, J., 2023. First approach to the aroma characterization of monovarietal red wines produced from varieties better adapted to abiotic stresses. Plants 12(10): 2063. https://doi.org/10.3390/plants12102063.
  • Aguirre-Becerra, H., Vazquez-Hernandez, M.C., Alvarado-Mariana, A., Guevara-Gonzalez, R.G., Garcia-Trejo, J.F., Feregrino-Perez, A.A., 2021. Role of stress and defense in plant secondary metabolites production. In: Pal, D., Nayak, A.K. (eds) Bioactive Natural Products for Pharmaceutical Applications. Advanced Structured Materials, Vol.140. Springer, Cham. https://doi.org/10.1007/978-3-030-54027-2_5.
  • Darriaut, R., Lailheugue, V., Masneuf-Pomarède, I., Marguerit, E., Martins, G., Compant, S., Ballestra, P., Upton, S., Ollat, N., Lauvergeat, V., 2022. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Horticultural Research, 9: uhac019. https://doi. org/10.1093/hr/uhac019.
  • Biasi, R., E. Brunori, S. Vanino, A. Bernardini, A. Catalani, R. Farina, A. Bruno, G. Chilosi 2023. Soil-plant interaction mediated by indigenous AMF in grafted and own-rooted grapevines under field conditions. Agriculture 13(5):1051. https://doi.org/10.3390/agriculture13 051051.
  • Pool, R., Wolf, T., Welser, M.J., Goffinet, M.C., 1992. Environmental factors affecting dormant bud cold acclimation of three Vitis cultivars. In Proceedings of the 4. International Symposium on Grapevine Physiology, pp:11-15.
  • Roby, G., Harbertson, J.F., Adams, D.A., Matthews, M.A., 2004. Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2):100-107. https:// doi.org/10.1111/j.1755-0238.2004.tb00012.x.
  • Aleynova, O.A., Kiselev, K.V., 2023-a. Interaction of plants and endophytic microorganisms: molecular aspects, biological functions, community composition, and practical applications. Plants, 12(4):714. https://doi.org/10. 3390/plants12040714.
  • Aleynova, O.A., Nityagovsky, N.N., Ananev, A.A., Suprun, A.R., Ogneva, Z.V., Dneprovskaya, A.A., Beresh, A.A., Dubrovina, A.S., Chebukin, P.A., Kiselev, K.V., 2023-b. Bacterial and fungal endophytes of grapevine cultivars growing in Primorsky Krai of Russia. Horticulturae, 9:1257. https://doi.org/10.3390/horticulturae9121257.
  • Aguilera, P., Ortiz, N., Becerra, N., Turrini, A., Gaínza-Cortés, F., Silva-Flores, P., Aguilar-Paredes, A., Romero, J.K., Jorquera-Fontena, E., Mora, Md. L.L., Borie, F., 2022 Application of Arbuscular Mycorrhizal Fungi in vineyards: Water and biotic stress under a climate change scenario: new challenge for Chilean grapevine crop. Front. Microbiol. 13:826571. https://doi. org/10.3389/fmicb.2022.826571
  • Lin, L., Wu, J., Ho, K.P., Qi, S., 2001. Ultrasound-induced physiological effects and secondary metabolite (saponin) production in Panax ginseng cell cultures. Ultrasound in Medicine & Biology, 27(8):1147-1152. https://doi.org/10.1016/S0301-5629(01)00412-4.
  • Jung, H. M., Lee, S., Lee, W.H., Cho, B.K., Lee, S.H., 2018. Effect of vibration stress on quality of packaged grapes during transportation. Engineering in Agriculture, Environment and Food, 11(2):79-83. https://doi.org/10.1016/j.eaef. 2018.02.007.
  • Xiao, Y.M., Wu, Q., Cai, Y., Lin, X.F., 2005. Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydrate Research, 340(13):2097-2103. https://doi.org/10. 1016/j.carres.2005.06.027.
  • Hasan, M.M., Baek, K.H., 2013. Induction of resveratrol biosynthesis in grape skins and leaves by ultrasonication treatment. Horticultural Science&Technology, 31(4):496-502. https://doi. org/10.7235/hort.2013.12229.
  • Mikami, M., Mori, D., Masumura, Y., Aoki, Y., Suzuki, S., 2017. Electrical stimulation: An abiotic stress generator for enhancing anthocyanin and resveratrol accumulation in grape berry. Scientia Horticulturae, 226:285-292. https://doi. org/10.1016/j.scienta.2017.09.005.
  • Billet, K., Houillé, B., Besseau, S., Mélin, C., Oudin, A., Papon, N., Lanoue, A., 2018. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned by product. Food Chemistry, 240, 1022-1027. https://doi.org/10. 1016/j.foodchem.2017.07.105.
  • Langcake, P., Pryce, R. J. 1977. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 16(8):1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9.
  • Creasy, L.L., Coffee, M., 1988. Phytoalexin production potential of grape berries. Journal of the American Society for Horticultural Science 113(2):230-234. https://doi.org/10.21273/jashs. 113.2.230.
  • Nigro, F., Ippolito, A., Lima, G., 1998. Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3):171-181. https://doi.org/10.1016/s0925-521 4(98)00009-x.
  • Bahar, E., Korkutal, İ., Tok Abay, C., 2023. Bağcılık Çalışmaları: Geleneksel ve Modern Yaklaşımlar, Bölüm 2: Asmalara geç dönemde uygulanan abiyotik ve biyotik streslerin salkım özelliklerine etkileri. İksad Publications, Ankara. 244s. ISBN:978-625-367-558-5. https://dx.doi. org/10.5281/zenodo.10444909.
  • Akın, A., Altındişli, A. 2010. Emir, Gök Üzüm ve Kara Dimrit üzüm çeşitlerinin çekirdek yağlarının yağ asidi kompozisyonu ve fenolik madde içeriklerinin belirlenmesi. Akademik Gıda, 8(6):19-23.
  • Göktürk Baydar, N., Babalık, Z., Hallaç Türk, F., Çetin, E.S., 2011. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. Tarım Bilimleri Dergisi, 17: 67-76.
  • Sochorova, L., Prusova, B., Jurikova, T., Mlcek, J., Adamkova, A., Baron, M., Sochor, J., 2020. The study of antioxidant components in grape seeds. Molecules, 25:3736. https://doi.org/10. 3390/molecules25163736.
  • Chengolova, Z., Ivanov, Y., Godjevargova, T. 2023. Comparison of identification and quantification of polyphenolic compounds in skins and seeds of four grape varieties. Molecules 28:4061. https://doi.org/10.3390/molecules28104 061.
  • Yıkmış, S., Demir, E., 2023. Üzüm çekirdeğinin fonksiyonel etkileri. 1. International Conference on Trends in Advanced Research, March 4-7, 2023: Konya, Turkey.
  • Kunter, B., Cantürk, S., Keskin, N., 2013. Üzüm tanesinin histokimyasal yapısı. Iğdır Üniversitesi, Fen Bilimleri Enstitüsü Dergisi 3(2):17-24.
  • Tahmaz, H., Söylemezoğlu, G., 2019. Denizli-Çal yöresinde yetiştirilen şaraplık üzüm çeşitlerinin farklı dokularında fenolik bileşik içeriklerinin belirlenmesi. Bahçe 48(1):39-48.
  • Aras Aşcı, Ö. 2020. Sağlıklı yaşamda üzüm ve üzüm ürünleri. Bilge International Journal of Science and Technology Research 4(Special Issue):22-32.
  • Jurasova, L., Jurikova, T., Baron, M., Sochor, J., 2023. Content of selected polyphenolic substances in parts of grapevine. Italian Journal of Food Science, 35(3):17-43. https://doi.org/10.15586/ ijfs.v35i3.2298.
  • Sevindik, O., Selli, S., 2016. Üzüm çekirdeklerinin temel biyoaktif bileşenleri. Çukurova Tarım Gıda Bilimleri Dergisi 31(2):9-16.
  • Zhou, D.D., Li, J., Xiong, R.G., Saimaiti, A., Huang, S.Y., Wu, S.X., Yang, Z.J., Shang, A., Zhao, C. N., Gan, R. Y., et al. 2022. Bioactive compounds, health benefits and food applications of grape. Foods, 11:2755. https://doi.org/10. 3390/foods11182755.
  • Konuk, D., Koreli, F., 2015. Kurutma sıcaklığının üzüm çekirdeklerinin toplam fenolik madde içeriği ve antioksidan kapasitesi üzerine etkisi. Pamukkale Üniversitesi Mühendislik Bilim Dergisi 21(9):404-407.
  • Rao, P.U. 1994. Nutrient composition of some less-familiar oil seeds. Food Chemistry 50(4):379-382. https://doi.org/10.1016/0308-8146(94)90208 -9.
  • Davidov-Pardo, G., Arozarena, I., Navarro, M., Marin-Arroyo, M. R. 2015. Chapter 18-Microencapsulation of grape seed extracts, Editor(s): Leonard M.C. Sagis, Microencapsulation and Microspheres for Food Applications, Academic Press, pp:351-368. ISBN: 9780128003503, https://doi.org/10.1016/b978-0-12-800350-3.00023-6.
  • Georgiev, V., Ananga A., Tsolova, V., 2014. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6:391-415. https://doi. org/10.3390/nu6010391.
  • Poni, S., Bernizzoni, F., Civardi, S., Libelli, N., 2009. Effects of pre‐bloom leaf removal on growth of berry tissues and must composition in two red Vitis vinifera L. cultivars. Australian Journal of Grape and Wine Research, 15(2):185-193. https://doi.org/10.1111/j.1755-0238.2008.00 044.x.
  • Candar, S., 2023. Understanding the impact of artificial stress on the morphological characteristics of cv. Merlot berry and cluster. Erwerbs-Obstbau, 01002-7. https://doi.org/10.10 07/s10341-023-01002-7.
  • Candar, S., 2022. Effects of mechanically induced abiotic stress on berry and cluster physical properties of cv. Cabernet-Sauvignon grape variety. Cukurova 8. International Scientific Researches Conference, Adana, 15-17 April. Full Texts Book, 1:1028-1037, ISBN 9786258377514.
  • Kamiloğlu, Ö., Üstün, G., 2014. Bazı şaraplık üzüm çeşitlerinin hasat sonrası kalite özellikleri. Türk Tarım ve Doğa Bilimleri Dergisi, 1(3):361-368.
  • Meteoroloji Genel Müdürlüğü (MGM), 2017. Tekirdağ ili genel istatistik verileri. https://www. mgm.gov.tr/veridegerlendirme/il-ve-ilceler. (Erişim Tarihi: 13.11.2017).
  • Duchêne, E., Schneider, C., 2005. Grapevine and climatic changes: A glance at the situation in Alsace. Agronomy for Sustainable Development 25(1):93-99 https://doi.org/10.1051/agro:2004057
  • Sigler, J., Freiburg, S.W., 2008. In den Zeiten des Klimawandels: Von der Süßreserve zur Sauerreserve? Der Badische Winzer, 33:21-25.
  • Çelik, H., 2006. Üzüm Çeşit Kataloğu. Sunfidan A.Ş. Mesleki Kitaplar Serisi: 3, Ankara, 165s.
  • Yeşilyurt Er, A., Altındişli, A., 2010. Bornova Misketi ve Cabernet-Sauvignon üzüm çeşitlerinde organik ve konvansiyonel yetiştiriciliğin asmanın gelişimine, üzüm ve şarap kalitesine etkisi. Türkiye 4. Organik Tarım Sempozyumu, 28 Haziran-1 Temmuz, Erzurum, Türkiye.
  • OIV, 2009. 2. Edition of the OIV descriptor list for grape varieties and Vitis species. OIV, Paris, France. pp:232.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Oenology and Viticulture
Journal Section Makaleler
Authors

Elman Bahar 0000-0002-8842-7695

İlknur Korkutal 0000-0002-8016-9804

Cannur Tok Abay 0000-0002-1769-9669

Publication Date May 29, 2024
Submission Date January 29, 2024
Acceptance Date May 13, 2024
Published in Issue Year 2024

Cite

APA Bahar, E., Korkutal, İ., & Tok Abay, C. (2024). Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi. Bahçe, 53(1), 11-20. https://doi.org/10.53471/bahce.1427915
AMA Bahar E, Korkutal İ, Tok Abay C. Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi. Bahçe. May 2024;53(1):11-20. doi:10.53471/bahce.1427915
Chicago Bahar, Elman, İlknur Korkutal, and Cannur Tok Abay. “Abiyotik Ve Biyotik Streslerin Cabernet-Sauvignon Ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi”. Bahçe 53, no. 1 (May 2024): 11-20. https://doi.org/10.53471/bahce.1427915.
EndNote Bahar E, Korkutal İ, Tok Abay C (May 1, 2024) Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi. Bahçe 53 1 11–20.
IEEE E. Bahar, İ. Korkutal, and C. Tok Abay, “Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi”, Bahçe, vol. 53, no. 1, pp. 11–20, 2024, doi: 10.53471/bahce.1427915.
ISNAD Bahar, Elman et al. “Abiyotik Ve Biyotik Streslerin Cabernet-Sauvignon Ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi”. Bahçe 53/1 (May 2024), 11-20. https://doi.org/10.53471/bahce.1427915.
JAMA Bahar E, Korkutal İ, Tok Abay C. Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi. Bahçe. 2024;53:11–20.
MLA Bahar, Elman et al. “Abiyotik Ve Biyotik Streslerin Cabernet-Sauvignon Ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi”. Bahçe, vol. 53, no. 1, 2024, pp. 11-20, doi:10.53471/bahce.1427915.
Vancouver Bahar E, Korkutal İ, Tok Abay C. Abiyotik ve Biyotik Streslerin Cabernet-Sauvignon ve Merlot Üzüm Çeşitlerinin Bazı Çekirdek Özelliklerine Etkisi. Bahçe. 2024;53(1):11-20.

BAHÇE Dergisi
bahcejournal@gmail.com
https://bahcejournal.org
Atatürk Bahçe Kültürleri Merkez Araştırma Enstitüsü, 77100 Yalova
X (Twitter)LinkedinFacebookInstagram