Fatty Acid Composition and Biodiesel Quality of Brassica nigra, Brassica napus and Sinapis arvensis Seeds
Year 2023,
Volume: 52 Issue: 1, 1 - 6, 22.05.2023
Betül Gıdık
,
Volkan Gül
,
Fadul Önemli
,
Ümit Girgel
Abstract
The increasing world population and developing industrial areas increase the need for energy. This situation makes alternative and renewable energy sources and the efficient use of these sources more valuable. In this study, the seeds of Sinapis arvensis, Brassica nigra, and Brassica napus from Brassicaceae family grown in ecological conditions of Bayburt province of Turkey, to determine the usability potential of wild species in biodiesel production. Biodiesel quality characteristics and oil yield and fatty acid composition were determined for the first time for the region using GC-MS. The oil yield of the species included in the study from the Brassicaceae family was found to be between 30.29% and 46.02%. In addition, linolenic acid (7.62%-13.70%) values were determined the lowest in Brassica napus and the highest in Brassica nigra. In terms of flash point (194˚C-195˚C), B. napus and S. arvensis were the closest species. Fatty acid composition and biodiesel quality analysis results of S. arvensis and B. nigra were similar to B. napus. It has been observed that the wild species S. arvensis and B. nigra have renewable energy production potential in terms of biodiesel quality characteristics and fatty acid composition.
Supporting Institution
Bayburt Üniversitesi
Project Number
2017/02-69001-20
Thanks
This study was supported by Bayburt University Scientific Research Projects Unit with the project numbered 2017 / 02-69001-20.
References
- 1. Cullen, J. 1965. Hesperis. Notes R.B.G. Edinburgh pp. 26:192.
- 2. Davis, P.H., R.R. Mill and K. Tan, 1988. Flora of Turkey and the East Aegean Islands (supplement). Edinburgh, pp. 50–54.
- 3. Al-Shehbaz, I.H., M.A. Beilstein and E.A. Kellogg, 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Systematics and Evolution. 259(1), 89-120.
- 4. Gidik, B., F. Onemli and E. Cabi, 2016. Determination of wild plant species of Brassicaceae family in Turkish Thrace. Biological Diversity and Conservation. 9(3): 100-105.
- 5. Kyamanywa, N., I.M. Tait, C.M. Mitchell, M.J. Hedley, D. Pacheco and P. Bishop, 2020. Effect of a late summer diet change from pasture to brassica crop and silages on dairy cow milk production and urinary nitrogen excretion. New Zealand Journal of Agricultural Research. 64(1), 1-2.
- 6. Alagoz M.S. and T. Mahmoud, 2018. An investigation of some key morpho-physiological attributes and leaf proteome profile in canola (Brassica napus L.) under salinity stress. Pakistan Journal of Botany. 50(3): 847-852.
- 7. Gugel R.K. and K.C. Falk, 2006. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science. 86(4), 1047-1058.
- 8. Warwick, S., I.R. Gugel and T. McDonald, 2006. Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada. Genetic Resources and Crop Evolution. 53(2), 297-312.
- 9. Rahimi, T., D. Kahrizi, M. Feyzi, H. R. Ahmadvandi and M. Mostafaei, 2021. Catalytic performance of MgO /Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: Optimization by RSM-CCD method. Industrial Crops and Products. 159, 1-14.
- 10. Gidik, B., V. Gul and A. Sefali, 2019. A study of wild plant species of Brassicaceae family in Bayburt region of Turkey. Pakistan Journal of Botany. 51(2): 681-687.
- 11. Eryilmaz, T., M.K. Yesilyurt, C. Cesur, H. Yumak, E. Aydin, S.A. Celik and A.K. Yildiz, 2014. Determination of fuel properties of biodiesel produced from safflower (Carthamus tinctorius L.) Dincer variety grown in Yozgat province conditions. Journal of Agricultural Faculty of Gaziosmanpasa University. 31(1): 63-72.
- 12. Woods, D.L., J.J. Capcara & R.K. Downey 1991. The potential of mustard (Brassica juncea L.) Coss) as an edible oil crop on the Canadian Prairies. Canadian Journal of Plant Science. 71(1), 19-58.
- 13. Ramos, M.J., C.M. Ferna´ndez, A. Casas, L. Rodrı´guez and A. Pe´rez, 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology. 100, 261-268.
- 14. Kayacetin F. 2020. Botanical characteristics, potential uses, and cultivation possibilities of mustards in Turkey: a review. Turkish Journal of Botany. 44(2), 101 - 127.
- 15. Page, A.R., K. Miller and D. Keeney 1982. Methods of soil analysis. Part 2 (Chemical and Microbiological Properties Second Edition). Soil Science Society of America. Inc. Publisher Madison, Wisconsin USA.
- 16. Cartea, E., A.D. Haro-Bailón, G. Padilla, S. Obregón-Cano, M.D. Rio-Celestino and A. Ordás, 2019. Seed oil quality of Brassica napus and Brassica rapa germplasm from Northwestern. Spain Foods. 8(8), 292-299.
- 17. European Standard of TS-EN 14103, 2003. Fat and oil derivatives-Fatty Acid Methyl Esters (FAME) - Determination of ester and linolenic acid methyl ester contents, April.
- 18. Haliloglu H. and V. Beyyavas 2019. Determination of yield, yield components and oil ratio of some winter canola (Brassica napus L.) cultivars under semi-arid conditions. Alinteri Journal of Agriculture Sciences. 34(1),76-83.
- 19. Oz, E.S. 2013. Determination of the performance of some summer rape (canola) varieties and lines under Bornova conditions as winter and summer. Dissertation, E.U Institute of Science.
- 20. Tan, A.S. 2009. Yield potential of some rapeseed (canola) cultivars in menemen conditions. Anadolu Journal of Aegean Agricultural Research Institute. 19(2), 1-32.
- 21. Rayati, M., R.H. Islami and S.M. Mehrgan, 2020. Light intensity improves growth, lipid productivity, and fatty acid profile of Chlorococcum oleofaciens (Chlorophyceae) for biodiesel production. BioEnergy Research. 13, 1246-1260.
- 22. Ozcan, M., A. Akgul and A. Bayrak, 1998. Some composition properties of wild mustard (Sinapis arvensis L.) seeds and oils. Food. 23(4), 285-289.
- 23. Tonguc M. and S. Erbas, 2012. Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. TUBITAK, Turkish Journal of Agriculture and Forestry. 36, 673-679.
- 24. Mandal, S., S. Yadav, R. Singh, G. Begum, P. Suneja and M. Singh, 2002. Correlation studies on oil content and fatty acid profile of some Cruciferous species. Genetic Resources and Crop Evolution. 49,551–556.
- 25. Altuntas, A., 2006. Investigation of the effects of storage time and conditions on fuel properties in mustard oil biodiesel. Dissertation, Selcuk University Institute of Science.
- 26. Beyzi, E., A. Gunes, S.B. Beyzi and Y. Konca, 2019. Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. oleifera L.) oil with seed sizes. Industrial Crops and Products. 129(1), 10-14.
- 27. El-Beltagi, H.E.S., A. Amin and A.A. Mohamed, 2010. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Grasas Y Aceites. 61(2), 143-150.
- 28. Said-Al Ahl, H.A.H., H.M. Mehanna and M.F. Ramadan, 2016. Impact of water regime and phosphorus fertilization and their interaction on the characteristics of rapeseed (Brassica napus) and fatty acid profile of extracted oil. Communications in Biometry and Crop Science. 11(1), 64–67.
- 29. Chagantia V. N., G. Ganjeguntea, G. Niua, A. Ulery, J. M. Enciso, R. Flynn, N. Meki and J.R. Kiniry, 2021. Yield response of canola as a biofuel feedstock and soil quality changes under treated urban wastewater irrigation and soil amendment application. Industrial Crops and Products. 170(1), 1-10.
- 30. Ogut, H. and H. Oguz, 2005. Third millennium fuel, biodiesel. Nobel Publications. Konya.
- 31. Ogut, H., T. Eryilmaz and H. Oguz, 2007. Comparative investigation of fuel properties of biodiesel produced from some safflower (Carthamus tinctorius L.) varieties. 1st national oil crops and biodiesel symposium. 28-31 May, Samsun.
- 32. Aktas, A., 2012. Effects of using blends of melon kernel oil methyl ester and diesel fuel on the engine performance and emissions. Energy Education Science and Technology Part A: Energy Science and Research. 29(2), 1183-1192.
- 33. Ciubota-Rosie, C., M. Macoveanu, C.M. Ferna´ndez, M. J. Ramos, A. Pe´rez and A. Moreno, 2013. Sinapis alba seed as a prospective biodiesel source. Biomass and Bioenergy. 51(1), 83-90.
- 34. Karabas, H. 2013. Investigation of biodiesel fuel from canola oil using various reaction parameters. International Journal of Automotive Engineering and Technologies. 2(3), 85 – 91.
- 35. Ozener, O., L. Yuksek, A.T. Ergenc and M. Ozkan, 2014. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel. 115, 875-883.
- 36. Cakmakci, T., Y. Ucar and S. Erbas, 2016. Effect of wastewater applications on oil ratio and fatty acid composition in canola (Brassica napus L.). YYU Agricultural Science Journal. 26(2), 145-151.
- 37. Sahin, S. 2013. Investigation of the effects of linen oil biodiesel and mixtures with diesel oil on engine performance and exhaust emissions. Dissertation, Selcuk University, Institute of Science. Department of Agricultural Machinery.
Farklı Yabani Brassica Tohumlarının Yağ Asidi Kompozisyonu ve Biyodizel Kalitesi
Year 2023,
Volume: 52 Issue: 1, 1 - 6, 22.05.2023
Betül Gıdık
,
Volkan Gül
,
Fadul Önemli
,
Ümit Girgel
Abstract
Her geçen gün artan dünya nüfusu ve gelişen sanayi alanları enerjiye duyulan ihtiyacı da artırmaktadır. Bu durum alternatif ve yenilenebilir enerji kaynaklarını ve bu kaynakların verimli kullanımı konusunu daha değerli kılmaktadır. Bu çalışmada, yabani türlerin biyodizel üretiminde kullanılabilirlik potansiyelini belirlemek amacı ile Türkiye’nin Bayburt ili ekolojik koşullarında yetiştirilen Brassicaceae familyasından S. arvensis, B. nigra ve B. napus tohumlarının biyodizel kalite özellikleri ve GC-MS kullanılarak yağ verimi ve yağ asitleri kompozisyonu bölge için ilk kez belirlenmiştir. Brassicaceae familyasından çalışmada yer alan türlerin yağ verimi %30.29-%46.02 arasında bulunmuştur. Ayrıca linolenik asit (%7.62-%13.70) değerleri en düşük B. napus, en yüksek B. nigra’da belirlenmiştir. Parlama noktası bakımından (194˚C-195˚C) B. napus ve S. arvensis birbirine en yakın türler olduğu görülmüştür. S. arvensis ve B. nigra'nın yağ asidi kompozisyonu ve biyodizel kalite analiz sonuçları B. napus’ a benzer değerlerde bulunmuştur. Yabani türler olan S. arvensis ve B. nigra’nın biyodizel kalite özellikleri ve yağ asitleri kompozisyonu bakımından yenilenebilir enerji üretim potansiyeline sahip olduğu görülmüştür.
Project Number
2017/02-69001-20
References
- 1. Cullen, J. 1965. Hesperis. Notes R.B.G. Edinburgh pp. 26:192.
- 2. Davis, P.H., R.R. Mill and K. Tan, 1988. Flora of Turkey and the East Aegean Islands (supplement). Edinburgh, pp. 50–54.
- 3. Al-Shehbaz, I.H., M.A. Beilstein and E.A. Kellogg, 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Systematics and Evolution. 259(1), 89-120.
- 4. Gidik, B., F. Onemli and E. Cabi, 2016. Determination of wild plant species of Brassicaceae family in Turkish Thrace. Biological Diversity and Conservation. 9(3): 100-105.
- 5. Kyamanywa, N., I.M. Tait, C.M. Mitchell, M.J. Hedley, D. Pacheco and P. Bishop, 2020. Effect of a late summer diet change from pasture to brassica crop and silages on dairy cow milk production and urinary nitrogen excretion. New Zealand Journal of Agricultural Research. 64(1), 1-2.
- 6. Alagoz M.S. and T. Mahmoud, 2018. An investigation of some key morpho-physiological attributes and leaf proteome profile in canola (Brassica napus L.) under salinity stress. Pakistan Journal of Botany. 50(3): 847-852.
- 7. Gugel R.K. and K.C. Falk, 2006. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Canadian Journal of Plant Science. 86(4), 1047-1058.
- 8. Warwick, S., I.R. Gugel and T. McDonald, 2006. Genetic variation and agronomic potential of Ethiopian mustard (Brassica carinata) in western Canada. Genetic Resources and Crop Evolution. 53(2), 297-312.
- 9. Rahimi, T., D. Kahrizi, M. Feyzi, H. R. Ahmadvandi and M. Mostafaei, 2021. Catalytic performance of MgO /Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: Optimization by RSM-CCD method. Industrial Crops and Products. 159, 1-14.
- 10. Gidik, B., V. Gul and A. Sefali, 2019. A study of wild plant species of Brassicaceae family in Bayburt region of Turkey. Pakistan Journal of Botany. 51(2): 681-687.
- 11. Eryilmaz, T., M.K. Yesilyurt, C. Cesur, H. Yumak, E. Aydin, S.A. Celik and A.K. Yildiz, 2014. Determination of fuel properties of biodiesel produced from safflower (Carthamus tinctorius L.) Dincer variety grown in Yozgat province conditions. Journal of Agricultural Faculty of Gaziosmanpasa University. 31(1): 63-72.
- 12. Woods, D.L., J.J. Capcara & R.K. Downey 1991. The potential of mustard (Brassica juncea L.) Coss) as an edible oil crop on the Canadian Prairies. Canadian Journal of Plant Science. 71(1), 19-58.
- 13. Ramos, M.J., C.M. Ferna´ndez, A. Casas, L. Rodrı´guez and A. Pe´rez, 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology. 100, 261-268.
- 14. Kayacetin F. 2020. Botanical characteristics, potential uses, and cultivation possibilities of mustards in Turkey: a review. Turkish Journal of Botany. 44(2), 101 - 127.
- 15. Page, A.R., K. Miller and D. Keeney 1982. Methods of soil analysis. Part 2 (Chemical and Microbiological Properties Second Edition). Soil Science Society of America. Inc. Publisher Madison, Wisconsin USA.
- 16. Cartea, E., A.D. Haro-Bailón, G. Padilla, S. Obregón-Cano, M.D. Rio-Celestino and A. Ordás, 2019. Seed oil quality of Brassica napus and Brassica rapa germplasm from Northwestern. Spain Foods. 8(8), 292-299.
- 17. European Standard of TS-EN 14103, 2003. Fat and oil derivatives-Fatty Acid Methyl Esters (FAME) - Determination of ester and linolenic acid methyl ester contents, April.
- 18. Haliloglu H. and V. Beyyavas 2019. Determination of yield, yield components and oil ratio of some winter canola (Brassica napus L.) cultivars under semi-arid conditions. Alinteri Journal of Agriculture Sciences. 34(1),76-83.
- 19. Oz, E.S. 2013. Determination of the performance of some summer rape (canola) varieties and lines under Bornova conditions as winter and summer. Dissertation, E.U Institute of Science.
- 20. Tan, A.S. 2009. Yield potential of some rapeseed (canola) cultivars in menemen conditions. Anadolu Journal of Aegean Agricultural Research Institute. 19(2), 1-32.
- 21. Rayati, M., R.H. Islami and S.M. Mehrgan, 2020. Light intensity improves growth, lipid productivity, and fatty acid profile of Chlorococcum oleofaciens (Chlorophyceae) for biodiesel production. BioEnergy Research. 13, 1246-1260.
- 22. Ozcan, M., A. Akgul and A. Bayrak, 1998. Some composition properties of wild mustard (Sinapis arvensis L.) seeds and oils. Food. 23(4), 285-289.
- 23. Tonguc M. and S. Erbas, 2012. Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. TUBITAK, Turkish Journal of Agriculture and Forestry. 36, 673-679.
- 24. Mandal, S., S. Yadav, R. Singh, G. Begum, P. Suneja and M. Singh, 2002. Correlation studies on oil content and fatty acid profile of some Cruciferous species. Genetic Resources and Crop Evolution. 49,551–556.
- 25. Altuntas, A., 2006. Investigation of the effects of storage time and conditions on fuel properties in mustard oil biodiesel. Dissertation, Selcuk University Institute of Science.
- 26. Beyzi, E., A. Gunes, S.B. Beyzi and Y. Konca, 2019. Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. oleifera L.) oil with seed sizes. Industrial Crops and Products. 129(1), 10-14.
- 27. El-Beltagi, H.E.S., A. Amin and A.A. Mohamed, 2010. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Grasas Y Aceites. 61(2), 143-150.
- 28. Said-Al Ahl, H.A.H., H.M. Mehanna and M.F. Ramadan, 2016. Impact of water regime and phosphorus fertilization and their interaction on the characteristics of rapeseed (Brassica napus) and fatty acid profile of extracted oil. Communications in Biometry and Crop Science. 11(1), 64–67.
- 29. Chagantia V. N., G. Ganjeguntea, G. Niua, A. Ulery, J. M. Enciso, R. Flynn, N. Meki and J.R. Kiniry, 2021. Yield response of canola as a biofuel feedstock and soil quality changes under treated urban wastewater irrigation and soil amendment application. Industrial Crops and Products. 170(1), 1-10.
- 30. Ogut, H. and H. Oguz, 2005. Third millennium fuel, biodiesel. Nobel Publications. Konya.
- 31. Ogut, H., T. Eryilmaz and H. Oguz, 2007. Comparative investigation of fuel properties of biodiesel produced from some safflower (Carthamus tinctorius L.) varieties. 1st national oil crops and biodiesel symposium. 28-31 May, Samsun.
- 32. Aktas, A., 2012. Effects of using blends of melon kernel oil methyl ester and diesel fuel on the engine performance and emissions. Energy Education Science and Technology Part A: Energy Science and Research. 29(2), 1183-1192.
- 33. Ciubota-Rosie, C., M. Macoveanu, C.M. Ferna´ndez, M. J. Ramos, A. Pe´rez and A. Moreno, 2013. Sinapis alba seed as a prospective biodiesel source. Biomass and Bioenergy. 51(1), 83-90.
- 34. Karabas, H. 2013. Investigation of biodiesel fuel from canola oil using various reaction parameters. International Journal of Automotive Engineering and Technologies. 2(3), 85 – 91.
- 35. Ozener, O., L. Yuksek, A.T. Ergenc and M. Ozkan, 2014. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel. 115, 875-883.
- 36. Cakmakci, T., Y. Ucar and S. Erbas, 2016. Effect of wastewater applications on oil ratio and fatty acid composition in canola (Brassica napus L.). YYU Agricultural Science Journal. 26(2), 145-151.
- 37. Sahin, S. 2013. Investigation of the effects of linen oil biodiesel and mixtures with diesel oil on engine performance and exhaust emissions. Dissertation, Selcuk University, Institute of Science. Department of Agricultural Machinery.