BibTex RIS Cite

5E Öğretim Modeline Dayalı Öğretimin Öğrencilerin Gaz Basıncı ile İlgili Kavramsal Anlamalarına Etkisi

Year 2012, Volume: 6 Issue: 1, 220 - 264, 01.06.2012

Abstract

Bu çalışmanın amacı, farklı öğretim yöntem ve tekniklerinin bir arada kullanılması ile zenginleştirilmiş 5E öğretim modeline dayalı geliştirilen öğretim materyalinin öğrencilerin gaz basıncı kavramı ile ilgili kavramsal yapılarının farklılaşmasına etkisini incelemektir. Çalışmanın örneklemini toplam kırk sekiz ilköğretim sekizinci sınıf öğrencisi (deney grubu, N=25; kontrol grubu, N=23) oluşturmaktadır. Çalışma yarı deneysel araştırma desenine uygun olarak yürütülmüştür. Deney grubunda 5E öğretim modeli kapsamında farklı öğretim yöntem ve tekniklerinin bir arada kullanılması ile geliştirilen öğretim materyali kullanılırken, kontrol grubunda ise mevcut olan ders materyalleri kullanılmıştır. Veri toplama aracı olarak iki aşamalı kavram soruları kullanılmıştır. Veriler Şahin (2010) tarafından oluşturulan kategorilere göre çözümlenmiş ve istatistiksel olarak Mann Whitney U ve Wilcoxon İşaretli Sıralar test teknikleri ile analiz edilmiştir. Araştırmada hazırlanan öğretim materyalinin kavramsal yapılardaki farklılaşmayı sağlarken bilimsel bilgiye uygun ve kavram yanılgılarının önemli bir oranda giderilmesinde etkili olduğu ve bu farklılaşmanın öğrenci zihninde kalıcı olmasını sağladığı sonucu ortaya çıkmıştır.

References

  • Abraham, M.R., Gryzybowski, E.B., Renner, J.W. & Marek, A.E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29, 105-120.
  • Aypay, A., Erdoğan, M. & Sözer, M.A. (2007). Variation among schools on classroom practices in science based on TIMSS-1999 in Turkey. Journal of Research in Science Teaching, 44(10), 1417-1435.
  • Bayrak, N. & Doğan, S. (2009). Yapılandırmacı yaklaşıma uygun olarak geliştirilen ders yazılımı ve çalışma yapraklarının öğrencilerin akademik başarılarına ve kalıcılığa etkisi. Eğitim Bilimleri ve Uygulama, 8(15), 59-82.
  • Basca, B. B. ve Grotzer, T. A. (2001, April). Focusing on the nature of causality in a unit on pressure: How does it affect student understanding? Presented at the American Educational Research Association (AERA) Seattle.
  • Besson, U. & Viennot, L. (2004). Using models at the mesoscopic scale in teaching physics: two experimental interventions in solid friction and fluid statics. International Journals of Science Education, 26(9), 1083-1110.
  • Besson, U. (2004). Some features of causal reasoning: common sense and physic teaching. Research in Science & Technological Education, 22(1), 113-125.
  • Bodner, G.M. (1990). Why good teaching fails and hard-working students do not always succeed. Spectrum, 28 (1), 27- 32.
  • Büyüköztürk, Ş. (2007). Sosyal bilimler için veri analizi el kitabı. 7. Baskı, PegemA Yayıncılık, Ankara.
  • Cohen, L. & Manion, L. (1994). Research methods in education. London, Routeledge and Kegan Paul.
  • Çalik, M., Okur, M. & Taylor, N. (2010). A Comparison of Different Conceptual Change Pedagogies Employed Within the Topic of ‘‘Sound Propagation’’. J Sci Educ Technol, DOI 10.1007/s10956-010-9266-z.
  • Çalık, M., Ayas, A. & Coll, R.K. (2010). Investigating the effectiveness of teaching methods based on a four-step constructivist strategy. Journal of Science Education ve Technology, 19, 32–48.
  • Cardak, O., Dikmenli, M. & Saritas, Ö. (2008). Effect of 5E instructional model in student success in primary school 6th year circulatory system topic. Asia-Pacific Forum on Science Learning and Teaching, 9(2), 1-11.
  • Çepni, S. (2007). Araştırma ve proje çalışmalarına giriş. Genişletilmiş Üçüncü Baskı, Celepler Matbaacılık, Trabzon, 310s.
  • Çepni, S. (2009). Effects of computer supported instructional material (CSIM) in removing, students misconceptions about concepts: “Light, light source and seeing”. Energy Education Science and Technology, Part B: Social and Educational Studies, 1(2), 51-83.
  • Çepni, S., Akdeniz, A.R. & Keser, Ö.F. (2000, Eylül). Fen bilimleri öğretiminde bütünleştirici öğrenme kuramına uygun örnek rehber materyallerin geliştirilmesi. Fırat Üniversitesi, 19. Fizik Kongresi, Elazığ.
  • Çepni, S., Şahin, Ç. & İpek, H. (2010). Teaching floating and sinking concepts with different methods and techniques based on the 5E instructional model. Asia-Pacific Forum on Science Learning and Teaching, 11(2), Article 5, in press.
  • Cerit Berber, N. & Sarı, M. (2009). Kavramsal değişim metinlerinin iş, güç, enerji konusunu anlamaya etkisi. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 27, 159 -172.
  • Chambers, S.K. & Andre, T. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107–123.
  • Çetin, P.S., Kaya, E. & Geban, Ö. (2009). Facilitating conceptual change in gases concepts. J Sci Educ Technol, 18:130–137.
  • Dekkers, P.J.J.M. & Thijs, G.D. (1998). Making productive use of students’ initial conceptions in developing the concept of force. Science Education, 82(1), 31-51.
  • Ergin, İ. (2006). Fizik eğitiminde 5E modelinin öğrencilerin akademik başarısına, tutumuna ve hatırlama düzeyine etkisine bir örnek: “İki boyutta atış hareketi”. Doktora Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Ergin, İ., Uygar, K. & Ünsal, Y. (2008). An example for the effect of 5e model on the academic success and attitude levels of students’: “Inclined projectile motion”. Journal of Turkish Science Education, 5(3), 47-59.
  • Erginer, E. (2006). Yeni ilköğretim programları gerçekten yapılandırmacı mı? Bir fikir taraması. İlköğretmen Eğitimci Dergisi, 4, 46-47.
  • Fazelian, P., Naveh ebrahim, A. & Soraghi, S. (2010). The effect of 5E instructional design model on learning and retention of sciences for middle class students. Procedia Social and Behavioral Sciences, 5, 140–143.
  • Gearhart, M., Nagashima, S., Pfotenhauer, J., Clark, S., Schwab, C., Vendlinski, T., Osmundson, E., Herman, J. & Bernbaum, D.J. (2006). Developing expertise with classroom assessment in K-12 science: Learning to interpret student work. Interim findings from a 2- year study. Educational Assessment, 11(3-4), 237-263.
  • Grotzer, T.A. (2003, March). Transferring structural knowledge about the nature of causality: An emprical test of tree levels of transfer. Presented at the national association of research in science teaching (NARST) conferance, Philadelphia.
  • Haidar, A.H. & Abraham, M.R. (1991). A comparison of applied and theoretical knowledge of concept based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919-938.
  • Havu-Nuutinen, S. (2005). Examining young childrens’ conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27(3), 259-279.
  • Hewson, M.G. & Hewson, P.W. (2003). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 40, 86-98.
  • İnel, D., Balım, A. G. & Evrekli, E. (2009). Fen öğretiminde kavram karikatürü kullanımına ilişkin öğrenci görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), 3(1), 1-16.
  • İpek, H. & Çalık, M. (2008). Combining different conceptual change methods within four step constructivist teaching: A sample teaching of series and parallel circuits. International Journal of Environmental ve Science Education, 3(3), 143-153.
  • Kabapınar, F. (2005). Effectiveness of teaching via concept cartoons from the point of view of constructivist approach. Kuram ve Uygulamada Eğitim Bilimleri, 5(1), 135-146.
  • Kariotoglou, P. & Psillos, D. (1993). Pupils' pressure models and their implications for instruction. Research in Science & Technological Education, 11, 1, 95.
  • Karslı, F. & Şahin, Ç. (2009). Developing and applying work sheet based on science process skills about factors effecting solubility topic. Asia-Pacific Forum on Science Learning and Teaching, 9, 3.
  • Kaynar, D., Tekkaya, C. & Çakıroğlu, J. (2009). Effectiveness of 5e learning cycle instruction on students’ achievement in cell concept and scientific epistemological beliefs. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 37, 96-105.
  • Keogh, B. & Naylor, S. (1999a). Science goes underground. Adults Learning, 10(5), 3-6.
  • Keogh, B. & Naylor, S. (1999b). Concept cartoons, teaching and learning in science: An evaluation. Int. J. Sci. Educ., 21(4), 431-446.
  • Keogh, B., Naylor, S. & Downing, B. (2003, August 19–23). Children’s interaction in the classroom: Argumentation in primary science. Paper presented at the 4th conference of the European Science Education Research Association conference, Noordwijkerhout, the Netherlands.
  • Keser, Ö.F. (2003). Fizik eğitimine yönelik bütünleştirici bir öğrenme ortamı tasarımı ve uygulaması. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Komisyon, (2008). 8. Sınıf Hücreleme Yöntemine göre Fen ve Teknoloji. Zambak Yayınları, Ada Matbaacılık, 108-111, Ankara.
  • Krantz, P.D. & Barrow, L.H. (2006). Inquiry with seeds to meet the science education standards. The American Biology Teacher, 68(2), 92-97.
  • Krantz, P.D. (2004). Inquiry, slime and the national standards. Science Activities, 41(3), 22- 25.
  • Lamanauskas, V., Bilbokaitė, R. & Gedrovics, J. (2010). Lithuanian and Latvian students’ attitude towards science teaching/ learning methods: Comparative analysis. Problems of Education in the 21st Century, 19, 55-64.
  • Lee, S. (2007). Exploring students’ understanding concerning batteries—theories and practices. International Journal of Science Education, 29(4), 497–516.
  • Liew, C. (2004). The effectiveness of predict- observe- explain techniquein diagnosing students’ understanding of science and identifying their level of achievement. Doctorate Thesis, Science and Mathematics Education Centre, Curtin University of Technology.
  • Liu, T.C., Peng, H., Wu, W.H. & Lin, M.S. (2009). The effects of mobile natural-science learning based on the 5e learning cycle: A case study. Educational Technology & Society, 12(4), 344–358.
  • Marek, E.A. (1986). They misunderstand, but they’ll pass. The Science Teacher, 32–35.
  • MEB, (2004). Fen ve teknoloji dersi öğretim programı, ilköğretim 6, 7 ve 8. sınıf. MEB Yayınları, Ankara.
  • Monaghan, J.M. & Clement, J. (1999). Use of a computer simulation to develop mental simulations for understanding relative motion concepts. INT. J. SCI. EDUC., 21(9), 921- 944.
  • Novak, D.J. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77–101.
  • Önen, F. (2005). İlköğretimde basınç konusunda öğrencilerin sahip olduğu kavram yanılgılarının yapılandırmacı yaklaşım ile giderilmesi. Yüksek Lisans Tezi, Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, İstanbul.
  • Orgill, M-K & Thomas, M. (2007). Analogies and the 5E model. The Science Teacher, 74(1), 40–45.
  • Özdamar, K. (2004). Paket programlar ile istatistiksel veri analizi 1. Genişletilmiş 5. Baskı, Kaan Kitabevi, 449-450, Eskişehir.
  • Özmen, H. (2004). Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist) öğrenme. The Turkish Online of Educational Technology, 3(1), 14.
  • Özmen, H., Demircioğlu, H. & Demircioğlu, G. (2009). The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52, 681-695.
  • Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57, 1114–1126.
  • Özsevgeç, T. & Çepni, S. (2006). Farklı sınıflardaki öğrencilerin yüzme ve batma kavramlarını anlama düzeyleri. Milli Eğitim Dergisi, 172, 297-311.
  • Özsevgeç, T. (2007). İlköğretim 5. sınıf kuvvet ve hareket ünitesine yönelik 5e modeline göre geliştirilen rehber materyallerin etkililiklerinin belirlenmesi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Pınarbaşı, T., Canpolat, N., Bayrakçeken, S. & Geban, Ö. (2006). An investigation of effectiveness of conceptual change text-oriented instruction on students’ understanding of solution concepts. Research in Science Education, 36, 313-335.
  • Psillos, D. & Kariotoglou, P. (1999). Teaching fluids: Intended knowledge and students’ actual conceptual evolution. International Journal of Science Education, 21(1), 17–38.
  • Raghavan, K., Sartoris, M.L. & Glaser, R. (1998). Why does it go up? The impact of the MARS curriculum as revealed through changes in student explanations of a helium balloon. Journal of Research in Science Teaching, 35(5), 547–567.
  • Reid, D.J., Zhang, J. & Chen, Q. (2003). Supporting for scientific discovery learning in simulation environment. Journal of Computer Assisted Learning, 19, 9-20.
  • Rotbain, Y., Marbach-Ad, G. & Stavy, R. (2008). Using a computer animation to teach high school molecular biology. J. Sci. Educ. Technol., 17, 49–58.
  • Şahin Ç., İpek, H. & Çepni, S. (2010). Computer supported conceptual change text: Fluid pressure. Procedia Social and Behavioral Sciences, 2, 922-927.
  • Şahin, Ç. & Çepni, S. (2009, Ekim). Animasyon destekli tahmin-gözlem-açıklama tekniğinin fen öğretiminde kullanılması. K.T.Ü., 3. Uluslararası Bilgisayar ve Öğretim Teknolojileri Sempozyumu, Trabzon.
  • Şahin, Ç. (2010). İlköğretim 8. sınıf “kuvvet ve hareket” ünitesinde “zenginleştirilmiş 5e öğretim modeli”ne göre rehber materyaller tasarlanması, uygulanması ve değerlendirilmesi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Sahin, Ç., Calık, M. & Cepni, S. (2009). Using different conceptual change methods embedded within 5E model: A sample teaching of liquid pressure. Energy Education Science and Technology Part B: Social and Educational Studies, 1(3), 115-125.
  • Saka, A. (2006). Fen bilgisi öğretmen adaylarının genetik konusundaki kavram yanılgılarının giderilmesinde 5E modelinin etkisi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Seiger-Ehrenberg, S. (1981). Concept development. concept learning: How to make it happen in the classroom. Educational Leadership, 39(1), 36-43.
  • Sere, M.G. (1982). A study of some frameworks used by pupils aged 11 to 13 years in the interpretation of air pressure. International Journal of Science Education, 4(3), 299-309.
  • Sevim, S. (2007). Çözeltiler ve kimyasal bağlanma konularına yönelik kavramsal değişim metinleri geliştirilmesi ve uygulanması. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • She, H.C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change; A study of air pressure and buoyancy. International Journal of Science Education, 24(9), 981-996.
  • She, H.C. (2005a). Promoting students’ learning of air pressure concepts: The interrelationship of teaching approaches and student learning characteristics. The Journal of Experimental Education, 74(1), 29-51.
  • She, H.C. (2005b). Enhancing eighth grade students’ learning of buoyancy: The interaction of teachers’ instructional approach and students’ learning preference styles. International Journal of Science and Mathematics Education, 3, 609–624.
  • Sheppard, K. (2006). High school students’ understanding of titrations and related acid-base phenomena. Chemistry Education Research and Practice, 7(1), 32-45.
  • Stephenson, P. & Warwick, P. (2002). Using concept cartoons to support progression in students’ understanding of light. Physics Education. 37(2), 135–141.
  • Stephen, S.J.V. & Huziak-Clari, T.L. (2007). Tip-to-tail: Developing a conceptual model of magnetism with kindergartners using inquiry-based instruction. Journal of Elementary Science Education, 19(2), 45-58.
  • Tao, P.K. & Gunstone, R.F. (1997, March). The Process of Conceptual Change in ‘Force and Motion’. Paper Presented at the Annual Meeting of the American Educational Research Association, Chicago IL.
  • Tao, P.K. & Gunstone, R.F. (1999). The process of conceptual change in force and motion during computer-supported physic instruction. Journal of Research in Science Teaching, 36(7), 859-882.
  • Tao, P.K. (1997). Confronting students’ alternative conceptions in mechanics with the force and motion microworld. Computers in Physics, 11(2), 199-207.
  • Taylor, N. & Coll, R.K. (2002). Pre-service primary teachers' models of kinetic theory: An examination of three different cultural groups. Chemistry Education: Research and Practice in Europe, 3(3), 293-315.
  • Taylor, N. & Lucas, K.B. (2000). Implementing and evaluating a sequence of instruction on gaseous pressure with pre-service primary school student teachers. Australian Science Teachers Journal, 46(4), 9-34.
  • Tural, G., Akdeniz, A.R. & Alev, N. (2010). Effect of 5E teaching model on student teachers’ understanding of weightlessness. J Sci Educ Technol, 19(5), 470-488.
  • Türk, F. & Çalık, M. (2008). Using different conceptual change methods embedded within 5E model: A sample teaching of endothermic- exothermic reactions. Asia-Pacific Forum on Science Learning and Teaching, 9(1), 1-10.
  • Tytler, R. (1998a). The nature of students’ informal science conceptions. International Journal of Science Education, 20(8), 901-927.
  • Tytler, R. (1998b). Childrens’ conceptions of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
  • Trey, L. & Khan, S. (2008). How science students can learn about unobservable phenomena using computer-based analogies. Computers & Education, 51, 519–529.
  • Ünal, G. (2005). Fen öğretiminde derinliğine öğrenme: "basınç" konusunda modelleme. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Ünal, S. & Coştu, B. (2005). Problematic issue for students: Does it sink or float?. Asia- Pasific Forum on Science Learning and Teaching, 6(1), 1.
  • Ünal, S. (2007). Kimyasal bağlar konusunun öğretiminde yeni bir yaklaşım: BDÖ ve KDM’nin birlikte kullanımının kavramsal değişime etkisi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Ürey, M. ve Çalık, M. (2008). Combining different conceptual change methods within 5e model: A sample teaching design of ‘cell’ concept and its organelles. Asia- Pacific Forum on Science Learning and Teaching, 9(2), 1-15.
  • Uğur, B., Akkoyunlu, B. & Kurbanoğlu, S. (2009). Students’ opinions on blended learning and its implementation in terms of their learning styles. Educ Inf Technol, DOI 10.1007/s10639-009-9109-9.
  • Ural Keleş, P. (2009). Kavramsal değişim metinleri, oyun ve drama ile zenginleştirilmiş 5e modelinin etkililiğinin belirlenmesi: “Canlıları sınıflandıralım” örneği. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon. URL-1, (2010). http://www.egitim.gov.tr/pub/meb/fen_ve_teknoloji/ON/iOgr/def/fen_ve_teknoloji.ON- iOgr-def-3575-81-11.06.2009.15.02.13.78/index.html, (10 Ekim, 2010).
  • URL-2, (2005). Keogh, B. & Naylor, S., Teaching and learning in science: A new perspective. <http://www.leeds.ac.uk/educol/dokuments/000000115.htm>, (18 Mayıs 2012).
  • Vincent, D., Cassel, D. & Milligan, J. (2008). Will it float?: A learning cycle investigation of mass and volume. Science and Children, 45(6), 36–39.
  • White, R.T. & Gunstone, R.F. (1992). Probing understanding, The Falmer Press, London.
  • Wilder, M. & Shuttleworth, P. (2005). Cell inquiry: A 5e learning cycle lesson. Science Activities, 41(4), 37–43.
  • Windschitl, M. (2001). Using simulations in the middle school: Does assertiveness of dyad partners influence conceptual change?. International Journal of Science Education, 23(1), 17-32.
  • Yalçın, F.A. & Bayrakçeken, S. (2010). Learning model on pre-service science teachers’ achievement of acids-bases subject. International Online Journal of Educational Sciences, www.iojes.net, 2(2), 508-531.
  • Yıldırım, A. ve Şimşek, H., 2005. Sosyal bilimlerde nitel araştırma yöntemleri. 5. Baskı, Seçkin Yayıncılık, Ankara.
  • Yılmaz, M. & Saka, A.Z. (2005). Bilgisayar destekli fizik öğretiminde çalışma yapraklarına dayalı materyal geliştirme ve uygulama. The Turkish Online Journal of Educational Technology, 4(3), 120-131.
  • Yin, Y., Tomita, M.K. & Shavelson, R.J. (2008). Diagnosing and dealing with student misconceptions: Floating and sinking. Science Scope, 31(8), 34-39.
Year 2012, Volume: 6 Issue: 1, 220 - 264, 01.06.2012

Abstract

References

  • Abraham, M.R., Gryzybowski, E.B., Renner, J.W. & Marek, A.E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29, 105-120.
  • Aypay, A., Erdoğan, M. & Sözer, M.A. (2007). Variation among schools on classroom practices in science based on TIMSS-1999 in Turkey. Journal of Research in Science Teaching, 44(10), 1417-1435.
  • Bayrak, N. & Doğan, S. (2009). Yapılandırmacı yaklaşıma uygun olarak geliştirilen ders yazılımı ve çalışma yapraklarının öğrencilerin akademik başarılarına ve kalıcılığa etkisi. Eğitim Bilimleri ve Uygulama, 8(15), 59-82.
  • Basca, B. B. ve Grotzer, T. A. (2001, April). Focusing on the nature of causality in a unit on pressure: How does it affect student understanding? Presented at the American Educational Research Association (AERA) Seattle.
  • Besson, U. & Viennot, L. (2004). Using models at the mesoscopic scale in teaching physics: two experimental interventions in solid friction and fluid statics. International Journals of Science Education, 26(9), 1083-1110.
  • Besson, U. (2004). Some features of causal reasoning: common sense and physic teaching. Research in Science & Technological Education, 22(1), 113-125.
  • Bodner, G.M. (1990). Why good teaching fails and hard-working students do not always succeed. Spectrum, 28 (1), 27- 32.
  • Büyüköztürk, Ş. (2007). Sosyal bilimler için veri analizi el kitabı. 7. Baskı, PegemA Yayıncılık, Ankara.
  • Cohen, L. & Manion, L. (1994). Research methods in education. London, Routeledge and Kegan Paul.
  • Çalik, M., Okur, M. & Taylor, N. (2010). A Comparison of Different Conceptual Change Pedagogies Employed Within the Topic of ‘‘Sound Propagation’’. J Sci Educ Technol, DOI 10.1007/s10956-010-9266-z.
  • Çalık, M., Ayas, A. & Coll, R.K. (2010). Investigating the effectiveness of teaching methods based on a four-step constructivist strategy. Journal of Science Education ve Technology, 19, 32–48.
  • Cardak, O., Dikmenli, M. & Saritas, Ö. (2008). Effect of 5E instructional model in student success in primary school 6th year circulatory system topic. Asia-Pacific Forum on Science Learning and Teaching, 9(2), 1-11.
  • Çepni, S. (2007). Araştırma ve proje çalışmalarına giriş. Genişletilmiş Üçüncü Baskı, Celepler Matbaacılık, Trabzon, 310s.
  • Çepni, S. (2009). Effects of computer supported instructional material (CSIM) in removing, students misconceptions about concepts: “Light, light source and seeing”. Energy Education Science and Technology, Part B: Social and Educational Studies, 1(2), 51-83.
  • Çepni, S., Akdeniz, A.R. & Keser, Ö.F. (2000, Eylül). Fen bilimleri öğretiminde bütünleştirici öğrenme kuramına uygun örnek rehber materyallerin geliştirilmesi. Fırat Üniversitesi, 19. Fizik Kongresi, Elazığ.
  • Çepni, S., Şahin, Ç. & İpek, H. (2010). Teaching floating and sinking concepts with different methods and techniques based on the 5E instructional model. Asia-Pacific Forum on Science Learning and Teaching, 11(2), Article 5, in press.
  • Cerit Berber, N. & Sarı, M. (2009). Kavramsal değişim metinlerinin iş, güç, enerji konusunu anlamaya etkisi. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 27, 159 -172.
  • Chambers, S.K. & Andre, T. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107–123.
  • Çetin, P.S., Kaya, E. & Geban, Ö. (2009). Facilitating conceptual change in gases concepts. J Sci Educ Technol, 18:130–137.
  • Dekkers, P.J.J.M. & Thijs, G.D. (1998). Making productive use of students’ initial conceptions in developing the concept of force. Science Education, 82(1), 31-51.
  • Ergin, İ. (2006). Fizik eğitiminde 5E modelinin öğrencilerin akademik başarısına, tutumuna ve hatırlama düzeyine etkisine bir örnek: “İki boyutta atış hareketi”. Doktora Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Ergin, İ., Uygar, K. & Ünsal, Y. (2008). An example for the effect of 5e model on the academic success and attitude levels of students’: “Inclined projectile motion”. Journal of Turkish Science Education, 5(3), 47-59.
  • Erginer, E. (2006). Yeni ilköğretim programları gerçekten yapılandırmacı mı? Bir fikir taraması. İlköğretmen Eğitimci Dergisi, 4, 46-47.
  • Fazelian, P., Naveh ebrahim, A. & Soraghi, S. (2010). The effect of 5E instructional design model on learning and retention of sciences for middle class students. Procedia Social and Behavioral Sciences, 5, 140–143.
  • Gearhart, M., Nagashima, S., Pfotenhauer, J., Clark, S., Schwab, C., Vendlinski, T., Osmundson, E., Herman, J. & Bernbaum, D.J. (2006). Developing expertise with classroom assessment in K-12 science: Learning to interpret student work. Interim findings from a 2- year study. Educational Assessment, 11(3-4), 237-263.
  • Grotzer, T.A. (2003, March). Transferring structural knowledge about the nature of causality: An emprical test of tree levels of transfer. Presented at the national association of research in science teaching (NARST) conferance, Philadelphia.
  • Haidar, A.H. & Abraham, M.R. (1991). A comparison of applied and theoretical knowledge of concept based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919-938.
  • Havu-Nuutinen, S. (2005). Examining young childrens’ conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27(3), 259-279.
  • Hewson, M.G. & Hewson, P.W. (2003). Effect of instruction using students’ prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 40, 86-98.
  • İnel, D., Balım, A. G. & Evrekli, E. (2009). Fen öğretiminde kavram karikatürü kullanımına ilişkin öğrenci görüşleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), 3(1), 1-16.
  • İpek, H. & Çalık, M. (2008). Combining different conceptual change methods within four step constructivist teaching: A sample teaching of series and parallel circuits. International Journal of Environmental ve Science Education, 3(3), 143-153.
  • Kabapınar, F. (2005). Effectiveness of teaching via concept cartoons from the point of view of constructivist approach. Kuram ve Uygulamada Eğitim Bilimleri, 5(1), 135-146.
  • Kariotoglou, P. & Psillos, D. (1993). Pupils' pressure models and their implications for instruction. Research in Science & Technological Education, 11, 1, 95.
  • Karslı, F. & Şahin, Ç. (2009). Developing and applying work sheet based on science process skills about factors effecting solubility topic. Asia-Pacific Forum on Science Learning and Teaching, 9, 3.
  • Kaynar, D., Tekkaya, C. & Çakıroğlu, J. (2009). Effectiveness of 5e learning cycle instruction on students’ achievement in cell concept and scientific epistemological beliefs. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 37, 96-105.
  • Keogh, B. & Naylor, S. (1999a). Science goes underground. Adults Learning, 10(5), 3-6.
  • Keogh, B. & Naylor, S. (1999b). Concept cartoons, teaching and learning in science: An evaluation. Int. J. Sci. Educ., 21(4), 431-446.
  • Keogh, B., Naylor, S. & Downing, B. (2003, August 19–23). Children’s interaction in the classroom: Argumentation in primary science. Paper presented at the 4th conference of the European Science Education Research Association conference, Noordwijkerhout, the Netherlands.
  • Keser, Ö.F. (2003). Fizik eğitimine yönelik bütünleştirici bir öğrenme ortamı tasarımı ve uygulaması. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Komisyon, (2008). 8. Sınıf Hücreleme Yöntemine göre Fen ve Teknoloji. Zambak Yayınları, Ada Matbaacılık, 108-111, Ankara.
  • Krantz, P.D. & Barrow, L.H. (2006). Inquiry with seeds to meet the science education standards. The American Biology Teacher, 68(2), 92-97.
  • Krantz, P.D. (2004). Inquiry, slime and the national standards. Science Activities, 41(3), 22- 25.
  • Lamanauskas, V., Bilbokaitė, R. & Gedrovics, J. (2010). Lithuanian and Latvian students’ attitude towards science teaching/ learning methods: Comparative analysis. Problems of Education in the 21st Century, 19, 55-64.
  • Lee, S. (2007). Exploring students’ understanding concerning batteries—theories and practices. International Journal of Science Education, 29(4), 497–516.
  • Liew, C. (2004). The effectiveness of predict- observe- explain techniquein diagnosing students’ understanding of science and identifying their level of achievement. Doctorate Thesis, Science and Mathematics Education Centre, Curtin University of Technology.
  • Liu, T.C., Peng, H., Wu, W.H. & Lin, M.S. (2009). The effects of mobile natural-science learning based on the 5e learning cycle: A case study. Educational Technology & Society, 12(4), 344–358.
  • Marek, E.A. (1986). They misunderstand, but they’ll pass. The Science Teacher, 32–35.
  • MEB, (2004). Fen ve teknoloji dersi öğretim programı, ilköğretim 6, 7 ve 8. sınıf. MEB Yayınları, Ankara.
  • Monaghan, J.M. & Clement, J. (1999). Use of a computer simulation to develop mental simulations for understanding relative motion concepts. INT. J. SCI. EDUC., 21(9), 921- 944.
  • Novak, D.J. (1988). Learning science and the science of learning. Studies in Science Education, 15, 77–101.
  • Önen, F. (2005). İlköğretimde basınç konusunda öğrencilerin sahip olduğu kavram yanılgılarının yapılandırmacı yaklaşım ile giderilmesi. Yüksek Lisans Tezi, Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, İstanbul.
  • Orgill, M-K & Thomas, M. (2007). Analogies and the 5E model. The Science Teacher, 74(1), 40–45.
  • Özdamar, K. (2004). Paket programlar ile istatistiksel veri analizi 1. Genişletilmiş 5. Baskı, Kaan Kitabevi, 449-450, Eskişehir.
  • Özmen, H. (2004). Fen öğretiminde öğrenme teorileri ve teknoloji destekli yapılandırmacı (constructivist) öğrenme. The Turkish Online of Educational Technology, 3(1), 14.
  • Özmen, H., Demircioğlu, H. & Demircioğlu, G. (2009). The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52, 681-695.
  • Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57, 1114–1126.
  • Özsevgeç, T. & Çepni, S. (2006). Farklı sınıflardaki öğrencilerin yüzme ve batma kavramlarını anlama düzeyleri. Milli Eğitim Dergisi, 172, 297-311.
  • Özsevgeç, T. (2007). İlköğretim 5. sınıf kuvvet ve hareket ünitesine yönelik 5e modeline göre geliştirilen rehber materyallerin etkililiklerinin belirlenmesi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Pınarbaşı, T., Canpolat, N., Bayrakçeken, S. & Geban, Ö. (2006). An investigation of effectiveness of conceptual change text-oriented instruction on students’ understanding of solution concepts. Research in Science Education, 36, 313-335.
  • Psillos, D. & Kariotoglou, P. (1999). Teaching fluids: Intended knowledge and students’ actual conceptual evolution. International Journal of Science Education, 21(1), 17–38.
  • Raghavan, K., Sartoris, M.L. & Glaser, R. (1998). Why does it go up? The impact of the MARS curriculum as revealed through changes in student explanations of a helium balloon. Journal of Research in Science Teaching, 35(5), 547–567.
  • Reid, D.J., Zhang, J. & Chen, Q. (2003). Supporting for scientific discovery learning in simulation environment. Journal of Computer Assisted Learning, 19, 9-20.
  • Rotbain, Y., Marbach-Ad, G. & Stavy, R. (2008). Using a computer animation to teach high school molecular biology. J. Sci. Educ. Technol., 17, 49–58.
  • Şahin Ç., İpek, H. & Çepni, S. (2010). Computer supported conceptual change text: Fluid pressure. Procedia Social and Behavioral Sciences, 2, 922-927.
  • Şahin, Ç. & Çepni, S. (2009, Ekim). Animasyon destekli tahmin-gözlem-açıklama tekniğinin fen öğretiminde kullanılması. K.T.Ü., 3. Uluslararası Bilgisayar ve Öğretim Teknolojileri Sempozyumu, Trabzon.
  • Şahin, Ç. (2010). İlköğretim 8. sınıf “kuvvet ve hareket” ünitesinde “zenginleştirilmiş 5e öğretim modeli”ne göre rehber materyaller tasarlanması, uygulanması ve değerlendirilmesi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Sahin, Ç., Calık, M. & Cepni, S. (2009). Using different conceptual change methods embedded within 5E model: A sample teaching of liquid pressure. Energy Education Science and Technology Part B: Social and Educational Studies, 1(3), 115-125.
  • Saka, A. (2006). Fen bilgisi öğretmen adaylarının genetik konusundaki kavram yanılgılarının giderilmesinde 5E modelinin etkisi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Seiger-Ehrenberg, S. (1981). Concept development. concept learning: How to make it happen in the classroom. Educational Leadership, 39(1), 36-43.
  • Sere, M.G. (1982). A study of some frameworks used by pupils aged 11 to 13 years in the interpretation of air pressure. International Journal of Science Education, 4(3), 299-309.
  • Sevim, S. (2007). Çözeltiler ve kimyasal bağlanma konularına yönelik kavramsal değişim metinleri geliştirilmesi ve uygulanması. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • She, H.C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change; A study of air pressure and buoyancy. International Journal of Science Education, 24(9), 981-996.
  • She, H.C. (2005a). Promoting students’ learning of air pressure concepts: The interrelationship of teaching approaches and student learning characteristics. The Journal of Experimental Education, 74(1), 29-51.
  • She, H.C. (2005b). Enhancing eighth grade students’ learning of buoyancy: The interaction of teachers’ instructional approach and students’ learning preference styles. International Journal of Science and Mathematics Education, 3, 609–624.
  • Sheppard, K. (2006). High school students’ understanding of titrations and related acid-base phenomena. Chemistry Education Research and Practice, 7(1), 32-45.
  • Stephenson, P. & Warwick, P. (2002). Using concept cartoons to support progression in students’ understanding of light. Physics Education. 37(2), 135–141.
  • Stephen, S.J.V. & Huziak-Clari, T.L. (2007). Tip-to-tail: Developing a conceptual model of magnetism with kindergartners using inquiry-based instruction. Journal of Elementary Science Education, 19(2), 45-58.
  • Tao, P.K. & Gunstone, R.F. (1997, March). The Process of Conceptual Change in ‘Force and Motion’. Paper Presented at the Annual Meeting of the American Educational Research Association, Chicago IL.
  • Tao, P.K. & Gunstone, R.F. (1999). The process of conceptual change in force and motion during computer-supported physic instruction. Journal of Research in Science Teaching, 36(7), 859-882.
  • Tao, P.K. (1997). Confronting students’ alternative conceptions in mechanics with the force and motion microworld. Computers in Physics, 11(2), 199-207.
  • Taylor, N. & Coll, R.K. (2002). Pre-service primary teachers' models of kinetic theory: An examination of three different cultural groups. Chemistry Education: Research and Practice in Europe, 3(3), 293-315.
  • Taylor, N. & Lucas, K.B. (2000). Implementing and evaluating a sequence of instruction on gaseous pressure with pre-service primary school student teachers. Australian Science Teachers Journal, 46(4), 9-34.
  • Tural, G., Akdeniz, A.R. & Alev, N. (2010). Effect of 5E teaching model on student teachers’ understanding of weightlessness. J Sci Educ Technol, 19(5), 470-488.
  • Türk, F. & Çalık, M. (2008). Using different conceptual change methods embedded within 5E model: A sample teaching of endothermic- exothermic reactions. Asia-Pacific Forum on Science Learning and Teaching, 9(1), 1-10.
  • Tytler, R. (1998a). The nature of students’ informal science conceptions. International Journal of Science Education, 20(8), 901-927.
  • Tytler, R. (1998b). Childrens’ conceptions of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
  • Trey, L. & Khan, S. (2008). How science students can learn about unobservable phenomena using computer-based analogies. Computers & Education, 51, 519–529.
  • Ünal, G. (2005). Fen öğretiminde derinliğine öğrenme: "basınç" konusunda modelleme. Yüksek Lisans Tezi. Dokuz Eylül Üniversitesi, Eğitim Bilimleri Enstitüsü, İzmir.
  • Ünal, S. & Coştu, B. (2005). Problematic issue for students: Does it sink or float?. Asia- Pasific Forum on Science Learning and Teaching, 6(1), 1.
  • Ünal, S. (2007). Kimyasal bağlar konusunun öğretiminde yeni bir yaklaşım: BDÖ ve KDM’nin birlikte kullanımının kavramsal değişime etkisi. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.
  • Ürey, M. ve Çalık, M. (2008). Combining different conceptual change methods within 5e model: A sample teaching design of ‘cell’ concept and its organelles. Asia- Pacific Forum on Science Learning and Teaching, 9(2), 1-15.
  • Uğur, B., Akkoyunlu, B. & Kurbanoğlu, S. (2009). Students’ opinions on blended learning and its implementation in terms of their learning styles. Educ Inf Technol, DOI 10.1007/s10639-009-9109-9.
  • Ural Keleş, P. (2009). Kavramsal değişim metinleri, oyun ve drama ile zenginleştirilmiş 5e modelinin etkililiğinin belirlenmesi: “Canlıları sınıflandıralım” örneği. Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon. URL-1, (2010). http://www.egitim.gov.tr/pub/meb/fen_ve_teknoloji/ON/iOgr/def/fen_ve_teknoloji.ON- iOgr-def-3575-81-11.06.2009.15.02.13.78/index.html, (10 Ekim, 2010).
  • URL-2, (2005). Keogh, B. & Naylor, S., Teaching and learning in science: A new perspective. <http://www.leeds.ac.uk/educol/dokuments/000000115.htm>, (18 Mayıs 2012).
  • Vincent, D., Cassel, D. & Milligan, J. (2008). Will it float?: A learning cycle investigation of mass and volume. Science and Children, 45(6), 36–39.
  • White, R.T. & Gunstone, R.F. (1992). Probing understanding, The Falmer Press, London.
  • Wilder, M. & Shuttleworth, P. (2005). Cell inquiry: A 5e learning cycle lesson. Science Activities, 41(4), 37–43.
  • Windschitl, M. (2001). Using simulations in the middle school: Does assertiveness of dyad partners influence conceptual change?. International Journal of Science Education, 23(1), 17-32.
  • Yalçın, F.A. & Bayrakçeken, S. (2010). Learning model on pre-service science teachers’ achievement of acids-bases subject. International Online Journal of Educational Sciences, www.iojes.net, 2(2), 508-531.
  • Yıldırım, A. ve Şimşek, H., 2005. Sosyal bilimlerde nitel araştırma yöntemleri. 5. Baskı, Seçkin Yayıncılık, Ankara.
  • Yılmaz, M. & Saka, A.Z. (2005). Bilgisayar destekli fizik öğretiminde çalışma yapraklarına dayalı materyal geliştirme ve uygulama. The Turkish Online Journal of Educational Technology, 4(3), 120-131.
  • Yin, Y., Tomita, M.K. & Shavelson, R.J. (2008). Diagnosing and dealing with student misconceptions: Floating and sinking. Science Scope, 31(8), 34-39.
There are 102 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Çiğdem Şahin This is me

Salih Çepni This is me

Publication Date June 1, 2012
Submission Date January 2, 2015
Published in Issue Year 2012 Volume: 6 Issue: 1

Cite

APA Şahin, Ç., & Çepni, S. (2012). 5E Öğretim Modeline Dayalı Öğretimin Öğrencilerin Gaz Basıncı ile İlgili Kavramsal Anlamalarına Etkisi. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 6(1), 220-264.