BibTex RIS Cite

-

Year 2015, Volume: 9 Issue: 1, 128 - 164, 24.06.2015
https://doi.org/10.17522/nefefmed.67442

Abstract

–The purpose of this study is to examine the effect of design-based science education practices on the 7th Grade students’ academic achievement in Force and Motion unit. Research was conducted in a 7th grade class with 30 students during the academic year of 2013-2014. The seven-week application phase took place during the 7th grade Force and Motion unit and conducted in a three-design based science education module. Mixed methods were used as a research design, particularly a special type of embedded design, a one-phase experimental embedded pattern design was applied. In accordance with mixed-methods research design, both quantitative and qualitative data were collected. Findings from quantitative and qualitative analysis indicated that design-based science education contributed the academic achievement in Force and Motion unit

References

  • Açıkgöz, K., Ü. (2006). Aktif Öğrenme. Biliş Yayınevi.
  • Apedoe, X. S., Reynolds, B., Ellefson, M. R., & Schunn, C. D. (2008). Bringing engineering design into high school science classrooms: the heating/cooling unit. Journal of Science Education and Technology, 17(5), 454-465.
  • Baykul, Y. (2000). Eğitimde ve psikolojide ölçme: Klasik test teorisi ve uygulaması. Ankara: ÖSYM Yayınları.
  • Bayrakçeken, S. (2011). Test geliştirme. Karip, E. (Ed.) Ölçme ve değerlendirme (293-324). Ankara: PegemA Akademi.
  • Böke, K. (2009). Örnekleme. Böke, K. (Ed.) Sosyal bilimlerde araştırma yöntemleri (105-147). İstanbul: ALFA Basım Yayım Dağıtım Ltd. Şti.
  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
  • Büyüköztürk, Ş., Kılıç Çakmak E., Akgün, Ö. E., Karadeniz, Ş. ve Demirel, F. (2008). Bilimsel araştırma yöntemleri. Ankara: PegemA Yayıncılık.
  • Creswell, J. W., Shope, R., Plano Clark, V. L., & Green, D. O. (2006). How interpretive qualitative research extends mixed methods research. Research in The Schools, 13(1), 1-11.
  • Creswell, J. W. & Plano Clark, V. L. (2007). Desiging and conducting mixed method research. London: Sage Publications.
  • Crismond, D. (2001). Learning and using science ideas when doing investigate-and-redesign tasks: A study of naive, novice, and expert designers doing constrained and scaffolded design work. Journal of Research in Science Teaching, 38(7), 791–820.
  • Daugherty, J. (2012). Infusing engineering concepts: Teaching engineering design. National Center for Engineering and Technology Education. Web site: http://files.eric.ed.gov/fulltext/ED537384.pdf adresinden 14 Haziran 2013 tarihinde edinilmiştir.
  • Doppelt, Y., Mehalik, M. M., Schunn, C. D., Silk, E., & Krysinski, D. (2008). Engagement and achievements: a case study of design-based learning in a science context. Journal of Technology Education, 19(2), 22-39.
  • Doppelt, Y. & Schunn, C. D. (2008). Identifying students’ perceptions of the important classroom features affecting learning aspects of a design-based learning environment. Learning Envirement Research, 11, 195-209.
  • Doppelt, Y. (2009). Assessing creative thinking in design-based learning. International Journal of Technology and Design Education, 19(1), 55-65.
  • Felix, A. L., Bandstra, J. Z., & Strosnider, W. H. J. (2010). Design-Based science for STEM student recruitment and teacher professional development. Proceedings of the Mid-Atlantic American Society for Engineering Education Conference.
  • Fortus, D. (2005). Restructuring school physics around real-world problems: A cognitive justification. Annual meeting of the American Educational Research Association. Montreal, Canada.
  • Fortus, D., Dershimer, R. C., Krajcik, J. S., Marx, R. W., & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.
  • Fortus, D., Krajcik, J. S., Dershimer, R. C., Marx, R. W. & Mamlok-Naaman, R. (2005). Design-based science and real-world problem-solving. International Journal of Science Education, 27(7), 855-879.
  • Gerlach, J. W. (2012) Elementary design challenges. Brunsell, E. (Ed.) Integrating engineering + science in your classroom (43-47). Arlington, Virginia: National
  • Glesne, C. (2013). Nitel araştırmaya giriş. Anı Yayıncılık.
  • Herrington, J. ve Oliver, R. (1995). Critical characteristics of situated learning: implications for the instructional design of multimedia. ASCILITE
  • Conference, University of Melbourne, Melbourne.
  • Kan, A. (2010). Ölçme aracı geliştirme. Tekindal, S. (Ed.) Eğitimde ölçme ve değerlendirme (240-274). Ankara: PegemA Akademi.
  • Kılıç, E. (2004). Durumlu öğrenme kuramının eğitimdeki yeri ve önemi. Gazi Eğitim Fakültesi Dergisi, 24(3), 307-320.
  • Kolodner, J. L. (2002). Facilitating the learning of design practices: lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3). Web site: http://scholar.lib.vt.edu/ejournals/JITE/v39n3/ adresinden 4 Haziran 2012 tarihinde edinilmiştir.
  • Kolodner, J. L., Camp, P., Crismond, D., Fasse, B., Gray, J., Holbrook, J. et al. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: putting learning by design(tm) Into Practice. Journal of the Learning Sciences, 12(4), 495-547.
  • Krajcik, J. S., Blumenfeld, P., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Middle school students' initial at-tempts at inquiry in project-based science classrooms. Journal of the Learning Sciences, 7, 313-350.
  • Leonard, M. J. (2004). Toward epistemologically authentic engineering design activities in the science classroom. National Association for Research in Science Teaching, Vancouver, B.C.
  • Leonard, M. & Derry, S. (2011). “What’s the science behind it?” The interaction of engineering and science goals, knowledge, and practices in a design-based science activity (WCER Working Paper No. 2011-5). University of Wisconsin–Madison.
  • Lewis, T. (2006). Design and inquiry: bases for an accommodation between science and technology education in the curriculum?. Journal of Research in Science Teaching, 43(3), 255-281.
  • Marulcu, İ. (2010). Investigating the impact of a lego-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders’ content learning of simple machines, Unpublished doctoral dissertation, Lynch School of Education, Boston College.
  • Mayring, P. (2011). Nitel sosyal araştırmaya giriş. Bilgesu Yayıncılık.
  • Mehalik, M., Doppelt, Y., & Schunn, C. D. (2008). Middle school science through design based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 1-15.
  • Merriam, S. B. (2013). Nitel araştırma desen ve uygulama için bir rehber. Ankara: Nobel Yayın Dağıtım.
  • Milli Eğitim Bakanlığı [MEB]. (2006). İlköğretim fen ve teknoloji dersi (6.,7.,8. sınıflar için) öğretim programı. Ankara: MEB Yayıncılık
  • Milli Eğitim Bakanlığı [MEB]. (2013). Fen bilimleri dersi programı, 3.-8. sınıflar. Web site: http://ttkb.meb.gov.tr/www/guncellenen-ogretim-programlari/icerik/151 adresinden 15 Kasım 2013 tarihinde edinilmiştir.
  • National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.
  • Özbek, Ö. Y. (2010). Ölçme araçlarında bulunması istenen nitelikler. Tekindal, S. (Ed.) Eğitimde ölçme ve değerlendirme (43-89). Ankara: PegemA Akademi.
  • Özer, M. A. (2005). Etkin öğrenmede yeni arayışlar işbirliğine dayalı öğrenme ve buluş yoluyla öğrenme. Türk Dünyası Sosyal Bilimler Dergisi, (35), 105-131.
  • Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanical systems: A design-based modeling approach. Journal of the Learning Sciences, 7(3&4), 429-449.
  • Penner, D., Giles, N., Lehrer, R. & Schauble, L. (1997). Building functional models: designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143.
  • Plano Clark, V. L, Huddleston, C, C., Churchill, S., O'Neil Green, D. & Garrett, A. (2008). Mixed methods approaches in family science research. Educational Psychology Papers and Publications, (81). Web site: http://digitalcommons.unl.edu/edpsychpapers/81 adresinden 12 Aralık 2013 tarihinde edinilmiştir.
  • Roth, W. (2001). Learning Science through technological design. Journal of Research in Science Teaching, 38(7), 768-790.
  • Ryan, M., Camp, P., & Crismond, D. (2001). Design rules of thumb – connecting science and design. Meetings of the American Educational Research Association, Seattle, WA
  • Sadler, P. M., Coyle, H. P., & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9, 299–327.
  • Sandelowski, M. (1996).Using qualitative methods in intervention studies. Research in Nursing & Health, 19(4), 359-364.
  • Smith, R. L. (2012). Mixed methods research design: a recommended paradign for the counseling profession. In Ideas and research you can use: VISTAS. Web site: http://www.counseling.org/Resources adresinden 23 Aralık 2013 tarihinde edinilmiştir.
  • Şeker, H. ve Gençdoğan, B. (2006). Psikolojide ve eğitimde ölçme aracı geliştirme. Ankara: Nobel Yayın Dağıtım
  • Tal, T., Krajcik, J. S. ve Blumenfeld, P. C. (2006). An observational methodology for studying group design activity. Research in Engineering Design, 2(4), 722-745.
  • Tekindal, S. (2009). Okullarda ölçme ve değerlendirme yöntemleri. Ankara: Nobel Yayın Dağıtım.
  • Vattam, S. S. & Kolodner, J. L. (2008). On foundations of technological support for addressing challenges facing design-based science learning. Pragmatics and Cognition, 16, 406–437.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Unpublished Qualifying Paper, Tufts University.
  • Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C.,
  • Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society for Engineering Education Annual Conference & Exposition, Louisville, KY.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (7. Baskı). Ankara: Seçkin Yayıncılık.

Fen Eğitiminde Mühendislik Uygulamalarının Kullanımı: Tasarım Temelli Fen Eğitiminin Öğrencilerin Akademik Başarıları Üzerine Etkisi

Year 2015, Volume: 9 Issue: 1, 128 - 164, 24.06.2015
https://doi.org/10.17522/nefefmed.67442

Abstract

Bu çalışmada, tasarım temelli fen eğitimi uygulamalarının, ilköğretim 7. sınıf öğrencilerinin Kuvvet ve Hareket ünitesine yönelik akademik başarılarına etkisinin belirlenmesi amaçlanmıştır. Araştırma, 2013-2014 eğitim-öğretim yılında 30 öğrencinin eğitim gördüğü bir ilköğretim 7. sınıf şubesinde gerçekleştirilmiştir. Karma yöntem araştırma desenlerinden iç içe gömülü desenin özel bir türü olarak, tek aşamalı deneysel gömülü desen ekseninde kurgulanan bu araştırmanın yedi hafta süren uygulama süreci, 7. sınıf Kuvvet ve Hareket ünitesi kazanımlarını kapsayacak şekilde organize edilmiş, üç tasarım temelli fen eğitimi modülü çerçevesinde yürütülmüştür. Karma yöntem araştırma metodolojisine uygun olacak şekilde nicel ve nitel verilerin bir arada kullanıldığı bu araştırmada elde edilen bulgular doğrultusunda, tasarım temelli fen eğitiminin öğrencilerin kuvvet ve hareket ünitesine yönelik akademik başarılarının gelişimine katkı sağladığı sonucuna ulaşılmıştır.

References

  • Açıkgöz, K., Ü. (2006). Aktif Öğrenme. Biliş Yayınevi.
  • Apedoe, X. S., Reynolds, B., Ellefson, M. R., & Schunn, C. D. (2008). Bringing engineering design into high school science classrooms: the heating/cooling unit. Journal of Science Education and Technology, 17(5), 454-465.
  • Baykul, Y. (2000). Eğitimde ve psikolojide ölçme: Klasik test teorisi ve uygulaması. Ankara: ÖSYM Yayınları.
  • Bayrakçeken, S. (2011). Test geliştirme. Karip, E. (Ed.) Ölçme ve değerlendirme (293-324). Ankara: PegemA Akademi.
  • Böke, K. (2009). Örnekleme. Böke, K. (Ed.) Sosyal bilimlerde araştırma yöntemleri (105-147). İstanbul: ALFA Basım Yayım Dağıtım Ltd. Şti.
  • Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
  • Büyüköztürk, Ş., Kılıç Çakmak E., Akgün, Ö. E., Karadeniz, Ş. ve Demirel, F. (2008). Bilimsel araştırma yöntemleri. Ankara: PegemA Yayıncılık.
  • Creswell, J. W., Shope, R., Plano Clark, V. L., & Green, D. O. (2006). How interpretive qualitative research extends mixed methods research. Research in The Schools, 13(1), 1-11.
  • Creswell, J. W. & Plano Clark, V. L. (2007). Desiging and conducting mixed method research. London: Sage Publications.
  • Crismond, D. (2001). Learning and using science ideas when doing investigate-and-redesign tasks: A study of naive, novice, and expert designers doing constrained and scaffolded design work. Journal of Research in Science Teaching, 38(7), 791–820.
  • Daugherty, J. (2012). Infusing engineering concepts: Teaching engineering design. National Center for Engineering and Technology Education. Web site: http://files.eric.ed.gov/fulltext/ED537384.pdf adresinden 14 Haziran 2013 tarihinde edinilmiştir.
  • Doppelt, Y., Mehalik, M. M., Schunn, C. D., Silk, E., & Krysinski, D. (2008). Engagement and achievements: a case study of design-based learning in a science context. Journal of Technology Education, 19(2), 22-39.
  • Doppelt, Y. & Schunn, C. D. (2008). Identifying students’ perceptions of the important classroom features affecting learning aspects of a design-based learning environment. Learning Envirement Research, 11, 195-209.
  • Doppelt, Y. (2009). Assessing creative thinking in design-based learning. International Journal of Technology and Design Education, 19(1), 55-65.
  • Felix, A. L., Bandstra, J. Z., & Strosnider, W. H. J. (2010). Design-Based science for STEM student recruitment and teacher professional development. Proceedings of the Mid-Atlantic American Society for Engineering Education Conference.
  • Fortus, D. (2005). Restructuring school physics around real-world problems: A cognitive justification. Annual meeting of the American Educational Research Association. Montreal, Canada.
  • Fortus, D., Dershimer, R. C., Krajcik, J. S., Marx, R. W., & Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.
  • Fortus, D., Krajcik, J. S., Dershimer, R. C., Marx, R. W. & Mamlok-Naaman, R. (2005). Design-based science and real-world problem-solving. International Journal of Science Education, 27(7), 855-879.
  • Gerlach, J. W. (2012) Elementary design challenges. Brunsell, E. (Ed.) Integrating engineering + science in your classroom (43-47). Arlington, Virginia: National
  • Glesne, C. (2013). Nitel araştırmaya giriş. Anı Yayıncılık.
  • Herrington, J. ve Oliver, R. (1995). Critical characteristics of situated learning: implications for the instructional design of multimedia. ASCILITE
  • Conference, University of Melbourne, Melbourne.
  • Kan, A. (2010). Ölçme aracı geliştirme. Tekindal, S. (Ed.) Eğitimde ölçme ve değerlendirme (240-274). Ankara: PegemA Akademi.
  • Kılıç, E. (2004). Durumlu öğrenme kuramının eğitimdeki yeri ve önemi. Gazi Eğitim Fakültesi Dergisi, 24(3), 307-320.
  • Kolodner, J. L. (2002). Facilitating the learning of design practices: lessons learned from an inquiry into science education. Journal of Industrial Teacher Education, 39(3). Web site: http://scholar.lib.vt.edu/ejournals/JITE/v39n3/ adresinden 4 Haziran 2012 tarihinde edinilmiştir.
  • Kolodner, J. L., Camp, P., Crismond, D., Fasse, B., Gray, J., Holbrook, J. et al. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: putting learning by design(tm) Into Practice. Journal of the Learning Sciences, 12(4), 495-547.
  • Krajcik, J. S., Blumenfeld, P., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Middle school students' initial at-tempts at inquiry in project-based science classrooms. Journal of the Learning Sciences, 7, 313-350.
  • Leonard, M. J. (2004). Toward epistemologically authentic engineering design activities in the science classroom. National Association for Research in Science Teaching, Vancouver, B.C.
  • Leonard, M. & Derry, S. (2011). “What’s the science behind it?” The interaction of engineering and science goals, knowledge, and practices in a design-based science activity (WCER Working Paper No. 2011-5). University of Wisconsin–Madison.
  • Lewis, T. (2006). Design and inquiry: bases for an accommodation between science and technology education in the curriculum?. Journal of Research in Science Teaching, 43(3), 255-281.
  • Marulcu, İ. (2010). Investigating the impact of a lego-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders’ content learning of simple machines, Unpublished doctoral dissertation, Lynch School of Education, Boston College.
  • Mayring, P. (2011). Nitel sosyal araştırmaya giriş. Bilgesu Yayıncılık.
  • Mehalik, M., Doppelt, Y., & Schunn, C. D. (2008). Middle school science through design based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 1-15.
  • Merriam, S. B. (2013). Nitel araştırma desen ve uygulama için bir rehber. Ankara: Nobel Yayın Dağıtım.
  • Milli Eğitim Bakanlığı [MEB]. (2006). İlköğretim fen ve teknoloji dersi (6.,7.,8. sınıflar için) öğretim programı. Ankara: MEB Yayıncılık
  • Milli Eğitim Bakanlığı [MEB]. (2013). Fen bilimleri dersi programı, 3.-8. sınıflar. Web site: http://ttkb.meb.gov.tr/www/guncellenen-ogretim-programlari/icerik/151 adresinden 15 Kasım 2013 tarihinde edinilmiştir.
  • National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G. & Feder, M. Washington, DC: National Academies Press.
  • Özbek, Ö. Y. (2010). Ölçme araçlarında bulunması istenen nitelikler. Tekindal, S. (Ed.) Eğitimde ölçme ve değerlendirme (43-89). Ankara: PegemA Akademi.
  • Özer, M. A. (2005). Etkin öğrenmede yeni arayışlar işbirliğine dayalı öğrenme ve buluş yoluyla öğrenme. Türk Dünyası Sosyal Bilimler Dergisi, (35), 105-131.
  • Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanical systems: A design-based modeling approach. Journal of the Learning Sciences, 7(3&4), 429-449.
  • Penner, D., Giles, N., Lehrer, R. & Schauble, L. (1997). Building functional models: designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143.
  • Plano Clark, V. L, Huddleston, C, C., Churchill, S., O'Neil Green, D. & Garrett, A. (2008). Mixed methods approaches in family science research. Educational Psychology Papers and Publications, (81). Web site: http://digitalcommons.unl.edu/edpsychpapers/81 adresinden 12 Aralık 2013 tarihinde edinilmiştir.
  • Roth, W. (2001). Learning Science through technological design. Journal of Research in Science Teaching, 38(7), 768-790.
  • Ryan, M., Camp, P., & Crismond, D. (2001). Design rules of thumb – connecting science and design. Meetings of the American Educational Research Association, Seattle, WA
  • Sadler, P. M., Coyle, H. P., & Schwartz, M. (2000). Engineering competitions in the middle school classroom: Key elements in developing effective design challenges. The Journal of the Learning Sciences, 9, 299–327.
  • Sandelowski, M. (1996).Using qualitative methods in intervention studies. Research in Nursing & Health, 19(4), 359-364.
  • Smith, R. L. (2012). Mixed methods research design: a recommended paradign for the counseling profession. In Ideas and research you can use: VISTAS. Web site: http://www.counseling.org/Resources adresinden 23 Aralık 2013 tarihinde edinilmiştir.
  • Şeker, H. ve Gençdoğan, B. (2006). Psikolojide ve eğitimde ölçme aracı geliştirme. Ankara: Nobel Yayın Dağıtım
  • Tal, T., Krajcik, J. S. ve Blumenfeld, P. C. (2006). An observational methodology for studying group design activity. Research in Engineering Design, 2(4), 722-745.
  • Tekindal, S. (2009). Okullarda ölçme ve değerlendirme yöntemleri. Ankara: Nobel Yayın Dağıtım.
  • Vattam, S. S. & Kolodner, J. L. (2008). On foundations of technological support for addressing challenges facing design-based science learning. Pragmatics and Cognition, 16, 406–437.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. Unpublished Qualifying Paper, Tufts University.
  • Wendell, K. B., Connolly, K. G., Wright, C. G., Jarvin, L., Rogers, C.,
  • Barnett, M., & Marulcu, I. (2010). Incorporating engineering design into elementary school science curricula. American Society for Engineering Education Annual Conference & Exposition, Louisville, KY.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (7. Baskı). Ankara: Seçkin Yayıncılık.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Serhat Ercan

Fatma Şahin This is me

Publication Date June 24, 2015
Submission Date June 24, 2015
Published in Issue Year 2015 Volume: 9 Issue: 1

Cite

APA Ercan, S., & Şahin, F. (2015). Fen Eğitiminde Mühendislik Uygulamalarının Kullanımı: Tasarım Temelli Fen Eğitiminin Öğrencilerin Akademik Başarıları Üzerine Etkisi. Necatibey Eğitim Fakültesi Elektronik Fen Ve Matematik Eğitimi Dergisi, 9(1), 128-164. https://doi.org/10.17522/nefefmed.67442

Cited By























FeTeMM Eğitiminin Akademik Başarıya Etkisini İnceleyen Çalışmaların Meta-Analizi
Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi
Leyla AYVERDİ
https://doi.org/10.17522/balikesirnef.755111






Determination of Science Teachers’ views on STEM Approach
Turkish Journal of Computer and Mathematics Education (TURCOMAT)
Hasan BAKIRCI
https://doi.org/10.16949/turkbilmat.417939