Research Article
BibTex RIS Cite

Yongalevha Üretimi İçin Elek Makinesi Atıklarının Kullanımı

Year 2018, Volume: 20 Issue: 1, 81 - 86, 16.04.2018

Abstract

Bu çalışmada, yongalevha üretiminde hızlı büyüyen bir tür olan Ailanthus Altissima (Mill.) Swingle
odunu ve yongaların elenmesinde
oluşan atıklar kullanılmıştır kullanılmıştır. Bu çalışmanın amacı elek
makinası atıklarının kullanımının (toz ve kaba yonga) yongalevhanın mekanik
(eğilme direnci, elastikiyet modülü ve çekme direnci), fiziksel (kalınlığına
şişme) ve yüzey kalitesi (pürüzlülük) ve formaldehit emisyonu üzerine
etkilerini belirlemektir. % 10 toz kullanımı yüzey pürüzlülüğü, kalınlığına
şişme ve mekanik özellikleri pozitif yönde etkilemiştir. % 20 toz kullanımı
mekanik direnç özellikleri, yüzey pürüzlülüğü ve formaldehit emisyonunu istatistiksel
olarak etkilememiştir. Panellerin kalınlığına şişme değerleri % 20 toz
kullanımı ile iyileşmiştir.  Toz
kullanımının % 30’a çıkması ile mekanik direnç özellikleri ve yüzey düzgünlüğü
da zayıf olmasına neden olmuştur. % 10 kaba yonga kullanımı yongalevhanın
kalite özelliklerini istatistiksel olarak etkilememiştir. Kaba yonga
kullanımının % 10’dan % 20 ve % 30’a çıkarılması yongalevhaların mekanik direnç
özellikleri ve kalınlığına şişme değerlerini negatif yönde etkilemiştir.
Sonuçlar hızlı büyüyen bir tür olan Ailanthus
Altissima
(Mill.) Swingle odununun yongalevha üretiminde
kullanılabileceğini göstermiştir. Toz (dış ve orta tabaka) ve kaba yonga
kullanımı (orta tabaka) sırasıyla % 20 ve % 10’u aşmamalıdır.

References

  • Akbulut T (1995). Effects of Various Factors on Properties of Horizontalppressed Particleboard. PHd Dissertion Thesis, İstanbul University, Institute of Natural Sciences. İstanbul (in Turkish).
  • Bardak S, Nemli G, Sari B, Baharoğlu M Zekoviç E (2010). Manufacture and Properties Composite from Waste Sanding Dusts. High Temperature Materials and Process, 29: 159-168.
  • Bekhta P, Lyutyy P, Hiziroglu S, Ortynska G (2016). Properties of Composite Panels Made from Tetra-Pak and Polyethylene Waste Material. Journal of Polymers and the Environment, 24: 159-165.
  • Carvalho AG, De Andrade BG, Cabral CPT, Vital BR (2015). Effect of Adding Yerba Mate Pruning Residues in Particleboard Panels. Revistra Arvore, 39: 209-214.
  • Cravo JCM, Sartori DD, Fiorelli J, Balireio JCD, Savastano H (2015). Particleboards of Agroindustrial Wastes. Ciencia Florestal, 25: 721-730.
  • EN 310 (1993). Wood based panels, Determination of Modulus of elasticity in bending and bending strength, EN, Brussels.
  • EN 317 (1993). Particleboard and fiberboards, determination of tensile strength perpendicular to the plane of the board, EN, Brussels.
  • EN 319 (1993). Particleboards and fiberboards, determination of tensile strength perpendicular to the plane of the board, EN, Brussels.
  • EN 120-1 (1993). Wood based panels, determination of formaldehyde content-extraction method called perforator method, EN, Brussels.
  • EN 312 (2005). Particleboards-specifications, EN, Brussels-Belgium.
  • Erakhruman AA, Areghan SE, Ogunleye MB (2008). Selected Physic-Mechanical Properties of Cement Bonded Particleboard Made from Pine Sawdust-Coir Mixture. Scientific Research and Essays, 3: 197-203.
  • Gamage N, Setunda S (2015). Modelling of Vertical Density Profile of Particleboard, Manufactured from Hardwood Sawmill Residue. Wood Material Science & Engineering, 10: 57-67.
  • He X, Wang DF, Zhang YL, Tang Y (2016). Manufacturing Technology and Parameter Optimization for Composite Board from Corn Stalk Rinds. Bioresources, 11: 4564-4578.
  • Hendarto B, Shayan E, Ozarska B, Carr R (2006). Analysis of Roughness of A Sanded Wood Surface. International Journal of Advanced Manufacturing Technology, 28: 775-780.
  • ISO 4287 (1997). Geometrical product specifications (GPS)-surface texture; profile method terms, definations and surface texture parameters, ISO Geneva.
  • Keskin H, Kucuktuvek MC, Guru M (2015). The Potential of Poppy (Papaver Somniferum Linnaeus) Husk for Manufacturing Wood-Based Particleboards. Construction and Building Materials, 95: 224-31.
  • Khazaeian A, Ashori A, Dizaj MY (2015). Suitability of Sorghum Stalks Fibers for Production of Particleboard. Carbohydrate Polymers, 120: 15-21.
  • Klimak P, Meinlschmidt P, Wimmer R, Plinke B, Schirp A (2016). Using Sunflower (Helianthus Annuus L.), Topinambour (Helianthus Tuberosus L.) and Cup-Plant (Silphium Perfoliatum L.) Stalks as Alternative Raw Materials for Particleboards. Industrial Crops and Products, 92: 157-164.
  • Kord B, Zare H, Hosseinzadeh A (2016). Evaluation of The Mechanical and Physical Properties of Particleboard Manufactured from Canola Straws. Maderas-Ciencia Y Tecnologia, 18: 9-18.
  • Kurokochi Y, Sato M (2015). Effect of Surface Structure, Wax and Silica on The Properties of Binderless Board Made from Rice Straw. Industrial Crops and Products, 77: 949-953.
  • Liu JY, Mcnatt JD (1991). Thickness Swelling and Density Variation in Aspen Flakeboard. Wood Science and Technology, 82: 52-33.
  • Nasser RA, Salem MZM, Al-Mefarrej HA, Aref IM (2016). Use of Tree Pruning Wastes For Manufacturing of Wood Reinforced Cement Composites. Cement & Concrete Composites, 72: 246-256.
  • Nazerian M, Beyki Z, Gargarii RM, Kool F (2016). The Effect of Some Technological Production Variables on Mechanical and Physical Properties of Particleboard Manufactured from Cotton Stalks. Maderas-Ciencia Y Tecnologia, 18: 67-78.
  • Oliveira SL, Mendes RF, Mendes LM, Freire TP (2016). Particleboard Panels Made from Sugarcane Bagasse: Characterization For Use In The Furniture Industry. Materials Research-Ibero-American Journal of Materials, 19: 914-22.
  • Rios PD, Vieria HC, Stupp AM, Kniess DD, Borba MH, Da Cunha AB (2015). Physical and Mechanical Review of Particleboard Composed of Dry Particles of Branches of Araucaria Angustifolia (Bertol.) Kuntze and Wood of Eucalyptus Grandis Hill Ex Maiden. Scientia Forestalis, 43: 283-89.
  • Rokiah H, Wan NWNA, Othman S (1987). Evaluations Of Some Properties Of Exterior Particleboard Made From Oil Palm Biomass. J. Compos. Mater, 45: 1659-1665.
  • Sam-Brew S, Smith GD (2015). Flax and Hemp Fiber-Reinforced Particleboard. Industrial Crops and Products, 77: 940-48.
  • Scatoloni MV, Protasio TD, Mendes RF, Mendes LM (2015). Thermal Stability of Pinus Oocarpa and Maize Cob Particleboards. Ciencia E Agrotecnologia, 39: 348-354.
  • Shuler CE, Kelly RA (1976). Effect of Flake Geometry on Mechanical Properties of Eastern Spruce Flake-Type Particleboard. Forest Prod. J, 26: 24-28.
  • Sogutlu C, Dongel, N, (2007). Tensile Shear Strengths of Some Local Woods Bonded with Polyvinyl Acetate and Polyurethane Adhesives. Journal of Polytechnic, 10(3): 287-293
  • Wang D, Sun XS (2002). Low Density Particleboard from Wheat Straw and Corn Pith. Ind. Crops Products, 15: 47-50.
  • Wang JG, Hu YC (2016). Novel Particleboard Composites Made From Coir Fiber and Waste Banana Stem Fiber. Waste Biomass Valorization, 7:1447-1458.
  • Wang SY, Yang TH, Lin LT, Lin CJ, Tsai MJ (2008). Fire Retardant Treated Low Formaldehyde Emission Particleboard Made from Recycled Wood Waste. Bioresource Technology, 99: 2072-2077.
  • Yang TH, Cheng JL, Song YW, Ming JT (2007). Characteristics of Particleboard Made from Recycled Wood Waste Chips Impregnated With Phenol Formaldehyde Resin. Building and Environment, 42: 189-195.
  • Yeniocak M, Goktas O, Ozen E, Gecgel A (2016). Improving Mechanical and Physical Properties of Particleboard Made from Vine Prunings By Addition Reinforcement Materials. Wood Research, 61: 265-74.
  • Zor M, Sozen E, Bardak T. (2016). Mechanical Performances of Laminated wood and Determination of Deformation in The Bending Test with The Aid of Image Analysis Method. Journal of Bartin Faculty of Forestry, 18(2), 126-136.

Use of Screening Machine Wastes for Manufacturing of Particleboard Composite

Year 2018, Volume: 20 Issue: 1, 81 - 86, 16.04.2018

Abstract

In this study, fast grown Ailanthus
Altissima
(Mill.) Swingle wood and screening machine wastes occurred during
the particleboard manufacturing were used for particleboard manufacturing. The
purpose of this study is to determine the effects of screening machine wastes
(dust and rude particles) usage on the mechanical (modulus of rupture, modulus
of elasticity and internal bond strength), physical (thickness swelling) and
surface quality (roughness), and formaldehyde emission of particleboard. 10%
dust usage positively affected the surface roughness, thickness swelling, and
mechanical properties of particleboard panels. 20 % dust usage did not
statistically affect the mechanical strength properties, surface roughness, and
formaldehyde emission. Thickness swelling of the panels was improved by using
20% dust. Increasing dust usage to 30% caused poorer the mechanical strength
properties and surface smoothness. 10% rude particle usage did not
statistically influence the quality properties of particleboard. Increasing
rude particle usage from 10% to 20 % and 30% negatively influenced the
mechanical resistance properties and thickness swelling of the particleboards.
The results showed that fast grown Ailanthus
Altissima
(Mill.) Swingle wood can be used particleboard manufacturing.
Dust (in surface and core layers) and rude particles (in core layer) usage
should not exceed 20% and 10 %, respectively.

References

  • Akbulut T (1995). Effects of Various Factors on Properties of Horizontalppressed Particleboard. PHd Dissertion Thesis, İstanbul University, Institute of Natural Sciences. İstanbul (in Turkish).
  • Bardak S, Nemli G, Sari B, Baharoğlu M Zekoviç E (2010). Manufacture and Properties Composite from Waste Sanding Dusts. High Temperature Materials and Process, 29: 159-168.
  • Bekhta P, Lyutyy P, Hiziroglu S, Ortynska G (2016). Properties of Composite Panels Made from Tetra-Pak and Polyethylene Waste Material. Journal of Polymers and the Environment, 24: 159-165.
  • Carvalho AG, De Andrade BG, Cabral CPT, Vital BR (2015). Effect of Adding Yerba Mate Pruning Residues in Particleboard Panels. Revistra Arvore, 39: 209-214.
  • Cravo JCM, Sartori DD, Fiorelli J, Balireio JCD, Savastano H (2015). Particleboards of Agroindustrial Wastes. Ciencia Florestal, 25: 721-730.
  • EN 310 (1993). Wood based panels, Determination of Modulus of elasticity in bending and bending strength, EN, Brussels.
  • EN 317 (1993). Particleboard and fiberboards, determination of tensile strength perpendicular to the plane of the board, EN, Brussels.
  • EN 319 (1993). Particleboards and fiberboards, determination of tensile strength perpendicular to the plane of the board, EN, Brussels.
  • EN 120-1 (1993). Wood based panels, determination of formaldehyde content-extraction method called perforator method, EN, Brussels.
  • EN 312 (2005). Particleboards-specifications, EN, Brussels-Belgium.
  • Erakhruman AA, Areghan SE, Ogunleye MB (2008). Selected Physic-Mechanical Properties of Cement Bonded Particleboard Made from Pine Sawdust-Coir Mixture. Scientific Research and Essays, 3: 197-203.
  • Gamage N, Setunda S (2015). Modelling of Vertical Density Profile of Particleboard, Manufactured from Hardwood Sawmill Residue. Wood Material Science & Engineering, 10: 57-67.
  • He X, Wang DF, Zhang YL, Tang Y (2016). Manufacturing Technology and Parameter Optimization for Composite Board from Corn Stalk Rinds. Bioresources, 11: 4564-4578.
  • Hendarto B, Shayan E, Ozarska B, Carr R (2006). Analysis of Roughness of A Sanded Wood Surface. International Journal of Advanced Manufacturing Technology, 28: 775-780.
  • ISO 4287 (1997). Geometrical product specifications (GPS)-surface texture; profile method terms, definations and surface texture parameters, ISO Geneva.
  • Keskin H, Kucuktuvek MC, Guru M (2015). The Potential of Poppy (Papaver Somniferum Linnaeus) Husk for Manufacturing Wood-Based Particleboards. Construction and Building Materials, 95: 224-31.
  • Khazaeian A, Ashori A, Dizaj MY (2015). Suitability of Sorghum Stalks Fibers for Production of Particleboard. Carbohydrate Polymers, 120: 15-21.
  • Klimak P, Meinlschmidt P, Wimmer R, Plinke B, Schirp A (2016). Using Sunflower (Helianthus Annuus L.), Topinambour (Helianthus Tuberosus L.) and Cup-Plant (Silphium Perfoliatum L.) Stalks as Alternative Raw Materials for Particleboards. Industrial Crops and Products, 92: 157-164.
  • Kord B, Zare H, Hosseinzadeh A (2016). Evaluation of The Mechanical and Physical Properties of Particleboard Manufactured from Canola Straws. Maderas-Ciencia Y Tecnologia, 18: 9-18.
  • Kurokochi Y, Sato M (2015). Effect of Surface Structure, Wax and Silica on The Properties of Binderless Board Made from Rice Straw. Industrial Crops and Products, 77: 949-953.
  • Liu JY, Mcnatt JD (1991). Thickness Swelling and Density Variation in Aspen Flakeboard. Wood Science and Technology, 82: 52-33.
  • Nasser RA, Salem MZM, Al-Mefarrej HA, Aref IM (2016). Use of Tree Pruning Wastes For Manufacturing of Wood Reinforced Cement Composites. Cement & Concrete Composites, 72: 246-256.
  • Nazerian M, Beyki Z, Gargarii RM, Kool F (2016). The Effect of Some Technological Production Variables on Mechanical and Physical Properties of Particleboard Manufactured from Cotton Stalks. Maderas-Ciencia Y Tecnologia, 18: 67-78.
  • Oliveira SL, Mendes RF, Mendes LM, Freire TP (2016). Particleboard Panels Made from Sugarcane Bagasse: Characterization For Use In The Furniture Industry. Materials Research-Ibero-American Journal of Materials, 19: 914-22.
  • Rios PD, Vieria HC, Stupp AM, Kniess DD, Borba MH, Da Cunha AB (2015). Physical and Mechanical Review of Particleboard Composed of Dry Particles of Branches of Araucaria Angustifolia (Bertol.) Kuntze and Wood of Eucalyptus Grandis Hill Ex Maiden. Scientia Forestalis, 43: 283-89.
  • Rokiah H, Wan NWNA, Othman S (1987). Evaluations Of Some Properties Of Exterior Particleboard Made From Oil Palm Biomass. J. Compos. Mater, 45: 1659-1665.
  • Sam-Brew S, Smith GD (2015). Flax and Hemp Fiber-Reinforced Particleboard. Industrial Crops and Products, 77: 940-48.
  • Scatoloni MV, Protasio TD, Mendes RF, Mendes LM (2015). Thermal Stability of Pinus Oocarpa and Maize Cob Particleboards. Ciencia E Agrotecnologia, 39: 348-354.
  • Shuler CE, Kelly RA (1976). Effect of Flake Geometry on Mechanical Properties of Eastern Spruce Flake-Type Particleboard. Forest Prod. J, 26: 24-28.
  • Sogutlu C, Dongel, N, (2007). Tensile Shear Strengths of Some Local Woods Bonded with Polyvinyl Acetate and Polyurethane Adhesives. Journal of Polytechnic, 10(3): 287-293
  • Wang D, Sun XS (2002). Low Density Particleboard from Wheat Straw and Corn Pith. Ind. Crops Products, 15: 47-50.
  • Wang JG, Hu YC (2016). Novel Particleboard Composites Made From Coir Fiber and Waste Banana Stem Fiber. Waste Biomass Valorization, 7:1447-1458.
  • Wang SY, Yang TH, Lin LT, Lin CJ, Tsai MJ (2008). Fire Retardant Treated Low Formaldehyde Emission Particleboard Made from Recycled Wood Waste. Bioresource Technology, 99: 2072-2077.
  • Yang TH, Cheng JL, Song YW, Ming JT (2007). Characteristics of Particleboard Made from Recycled Wood Waste Chips Impregnated With Phenol Formaldehyde Resin. Building and Environment, 42: 189-195.
  • Yeniocak M, Goktas O, Ozen E, Gecgel A (2016). Improving Mechanical and Physical Properties of Particleboard Made from Vine Prunings By Addition Reinforcement Materials. Wood Research, 61: 265-74.
  • Zor M, Sozen E, Bardak T. (2016). Mechanical Performances of Laminated wood and Determination of Deformation in The Bending Test with The Aid of Image Analysis Method. Journal of Bartin Faculty of Forestry, 18(2), 126-136.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Biomaterial Engineering, Bio-based Materials, Wood Science
Authors

Selahattin Bardak

Gökay Nemli

Publication Date April 16, 2018
Published in Issue Year 2018 Volume: 20 Issue: 1

Cite

APA Bardak, S., & Nemli, G. (2018). Yongalevha Üretimi İçin Elek Makinesi Atıklarının Kullanımı. Bartın Orman Fakültesi Dergisi, 20(1), 81-86. https://doi.org/10.24011/barofd.382428


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com