Review
BibTex RIS Cite

Viral enfeksiyonların tedavisinde kullanılan geleneksel tıbbi bitkiler: Kısa bir derleme

Year 2020, Volume: 1 Issue: 2, 29 - 48, 09.05.2020

Abstract

İnsanlik tarihi boyunca varlığını muhafaza eden virülser, en bulaşıcı mikroorganizmalardan sayılabilir. İnsanları enfekte eden virüsler DNA veya RNA virüslerine ayrılabilir. İnsanlığın, mevcut COVID-19’a benzer pandemikleri önlemesine veya en aza indirmesine yardımcı olacak etkili tedavi yöntemleri geliştirmesi için, her bir virüs sınıfının viral replikasyon döngülerine ve enfeksiyon mekanizmalarına aşina olması önemlidir. Çoğu antiviral ilaçlar, geniş spektrumlu olup ortak viral enfeksiyon faktörlerini hedef alır. Ancak dünya genelinde eşit erişilebilirlik olmaması ve yüksek maliyet ile istenmeyen yan etkiler, alternatif tedavi yöntemlerine girmemizi teşvik etmektedir. Bu kısa inceleme, dünya çapında viral enfeksiyonları tedavi etmek için geleneksel tıbbi sistemlerde kullanılan bitkiler ve bunların in-vitro ve in-vivo farmakolojik çalışmalarına odaklanacaktır. DNA virüslerinden Herpesviridae ve Hepatit B virüsü için kullanılan tıbbi bitkiler ele alınırken, HIV, influenza ve Coronaviridae ailesini tedavi etmek için kullanılan bitkiler, RNA virüsleri kapsamında tartışıldı. Sonuçlarımız, doğal kaynaklardan birçok ilacın geliştirildiğini, ve birçok bitkinin yaygın viral enfeksiyonlara karşı potansiyel spesifik ila geniş spektrumlu etkileri için henüz yeterince araştırılmadığını göstermektedir.

References

  • Waterson, A. P., & Wilkinson, L. (1978). An introduction to the history of virology. Cambridge University Press, Bentley House, 200 Euston Road, London NW1 2DB. Bentley House, 200 Euston Road, London NW1 2DB.
  • WHO, 2014. Retrieved from https://www.who.int/biologicals/vaccines/smallpox/en/ on 25 March 2020)
  • Huang, F., Wang, B. R., Wu, Y. Q., Wang, F. C., Zhang, J., & Wang, Y. G. (2016). Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World journal of gastroenterology, 22(35), 7999.
  • WHO, 2014. Smallpox. Retrieved from https://www.who.int/biologicals/vaccines/smallpox/en/ on 25 march 2020.
  • Casjens, S., & King, J. (1975). Virus assembly. Annual review of biochemistry, 44(1), 555-611.
  • Gelderblom, H. R. (1996). Structure and classification of viruses. In Medical Microbiology. 4th edition. University of Texas Medical Branch at Galveston.
  • Wagner R. Robert, Krug M. Robert (2020, April 2). Virus. Encyclopedia Britannica. Retrieved from https://www.britannica.com/science/virus/Evolution-of-new-virus-strains on 3 April 2020.
  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Viruses: Structure, function, and uses. In Molecular Cell Biology. 4th edition. WH Freeman.
  • Parker, F.; Nye, R.N. Studies on Filterable Viruses: II. Cultivation of Herpes Virus. Am J Pathol.1925,1, 337–340
  • Schaeffer, H. J., Gurwara, S., Vince, R., & Bittner, S. (1971). Novel substrate of adenosine deaminase. Journal of medicinal chemistry, 14(4), 367-369.
  • Birkmann, A., & Zimmermann, H. (2016). HSV antivirals–current and future treatment options. Current opinion in virology, 18, 9-13.
  • Treml, J., Gazdová, M., Šmejkal, K., Šudomová, M., Kubatka, P., & Hassan, S. T. (2020). Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses, 12(2), 154.
  • Brahmachari, G. (2012). Bioactive natural products: opportunities and challenges in medicinal chemistry. World Scientific
  • Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus research, 131(2), 111-120.
  • Naithani, R., Huma, L. C., Holland, L. E., Shukla, D., McCormick, D. L., Mehta, R. G., & Moriarty, R. M. (2008). Antiviral activity of phytochemicals: a comprehensive review. Mini reviews in medicinal chemistry, 8(11), 1106-1133.
  • Abad, M. J., Bedoya, L. M., Apaza, L., & Bermejo, P. (2012). Anti-infective flavonoids: an overview. In Bioactive Natural Products: Opportunities and Challenges in Medicinal Chemistry (pp. 443-473).
  • Bekut, M., Brkić, S., Kladar, N., Dragović, G., Gavarić, N., & Božin, B. (2018). Potential of selected Lamiaceae plants in anti (retro) viral therapy. Pharmacological research, 133, 301-314.
  • Bruhn, J. G., & Helmstedt, B. (1981). Ethnopharmacology: objectives, principles and perspectives. Natural products as medicinal agents.
  • Heinrich, M., Barnes, J., Prieto-Garcia, J., Gibbons, S., & Williamson, E. M. (2017). Fundamentals of Pharmacognosy and Phytotherapy. 3rd edition. Elsevier Health Sciences.
  • Denaro, M., Smeriglio, A., Barreca, D., De Francesco, C., Occhiuto, C., Milano, G., & Trombetta, D. (2019). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research.
  • WHO, 2017. "Herpes Simplex Virus Fact Sheet https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus. Retrieved on 25 March 2019.
  • WHO, 2019. "Hepatitis B Fact sheet”. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Retrieved on 25 March 2019.
  • Logan, C. M., & Rice, M. K. (1987). Medical and scientific abbreviations. Lippincott.
  • Ryu, W. S. (2016). Molecular virology of human pathogenic viruses. Academic Press.
  • Locarnini, S. (2004, February). Molecular virology of hepatitis B virus. In Seminars in liver disease (Vol. 24, No. S 1, pp. 3-10). Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
  • Schillie, S. F., Murphy, T. V., Sawyer, M., Ly, K., Hughes, E., Jiles, R., ... & Ward, J. W. (2013). CDC guidance for evaluating health-care personnel for hepatitis B virus protection and for administering postexposure management.
  • Committee on Infectious Diseases. (2017). Elimination of perinatal hepatitis B: providing the first vaccine dose within 24 hours of birth. Pediatrics, 140(3), e20171870.
  • Vlietinck, A. J., Van Hoof, L., Totte, J., Lasure, A., Berghe, D. V., Rwangabo, P. C., & Mvukiyumwami, J. (1995). Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. Journal of ethnopharmacology, 46(1), 31-47.
  • MacBae, W. D., Hudson, J. B., & Towers, G. H. N. (1988). Studies on the pharmacological activity of Amazonian Euphorbiaceae. Journal of Ethnopharmacology, 22(2), 143-172.
  • Appendino, G., & Szallasi, A. (1997). Euphorbium: modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life sciences, 60(10), 681-696.
  • Shamsabadipour, S., Ghanadian, M., Saeedi, H., Rahimnejad, M. R., Mohammadi-Kamalabadi, M., Ayatollahi, S. M., & Salimzadeh, L. (2013). Triterpenes and steroids from Euphorbia denticulata Lam. with anti-Herpes symplex virus activity. Iranian journal of pharmaceutical research: IJPR, 12(4), 759.
  • Karimi, A., Rafieian-Kopaei, M., Moradi, M. T., & Alidadi, S. (2017). Anti–Herpes Simplex Virus Type-1 Activity and Phenolic Content of Crude Ethanol Extract and Four Corresponding Fractions of Quercus brantii L. Acorn. Journal of evidence-based complementary & alternative medicine, 22(3), 455-46
  • Liu, S. N., Hu, J., Tan, S. H., Wang, Q., Xu, J., Wang, Y., ... & Gu, Q. (2017). ent-Rosane diterpenoids from Euphorbia milii showing an Epstein–Barr virus lytic replication assay. RSC advances, 7(74), 46938-46947.
  • Kim, D. E., Jung, S., Ryu, H. W., Choi, M., Kang, M., Kang, H., ... & Kim, J. (2018). Selective oncolytic effect in Epstein-Barr virus (EBV)-associated gastric carcinoma through efficient lytic induction by Euphorbia extracts. Journal of Functional Foods, 42, 146-158.
  • Cheng, H. Y., Lin, T. C., Yang, C. M., Wang, K. C., Lin, L. T., & Lin, C. C. (2004). Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. Journal of Antimicrobial Chemotherapy, 53(4), 577-583.
  • Wei, W., Pan, Y., Chen, Y., Lin, C., Wei, T., & Zhao, S. (2005). Carboxylic acids from Phyllanthus urinaria. Chemistry of natural compounds, 41(1), 17-21.
  • Lans, C. (2007). Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. Journal of Ethnobiology and Ethnomedicine, 3(1), 3.
  • Roumy, V., Ruiz, L., Macedo, J. C. R., Gutierrez-Choquevilca, A. L., Samaillie, J., Encinas, L. A., ... & Dubuisson, J. (2020). Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resources. Journal of Ethnopharmacology, 112735.
  • Bae, K. H., Yun, P. Y., & Choi, Y. E. (2009). Induction and in vitro Proliferation of Adventitious Roots in Phyllanthus urinaria. Korean Journal of Plant Resources, 22(5), 454-460.
  • Yang, C. M., Cheng, H. Y., Lin, T. C., Chiang, L. C., & Lin, C. C. (2005). Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro. Antiviral Research, 67(1), 24-30.
  • Yang, C. M., Cheng, H. Y., Lin, T. C., Chiang, L. C., & Lin, C. C. (2007). The in vitro activity of geraniin and 1, 3, 4, 6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. Journal of ethnopharmacology, 110(3), 555-558.
  • Cheng, H. Y., Yang, C. M., Lin, T. C., Lin, L. T., Chiang, L. C., & Lin, C. C. (2011). Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evidence-Based Complementary and Alternative Medicine, 2011.
  • Qi, W., Hua, L., & Gao, K. (2014). Chemical constituents of the plants from the genus Phyllanthus. Chemistry & biodiversity, 11(3), 364-395.
  • Del Barrio, G., & Parra, F. (2000). Evaluation of the antiviral activity of an aqueous extract from Phyllanthus orbicularis. Journal of ethnopharmacology, 72(1-2), 317-322.
  • Álvarez, Á. L., Dalton, K. P., Nicieza, I., Diñeiro, Y., Picinelli, A., Melón, S., ... & Parra, F. (2012). Bioactivity‐guided Fractionation of Phyllanthus orbicularis and Identification of the Principal Anti HSV‐2 Compounds. Phytotherapy Research, 26(10), 1513-1520.
  • Sheng Liu, Wanxing Wei, Kaichuang Shi, Xun Cao, Min Zhou, Zhiping Liu (2014). In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. Journal of Ethnopharmacology. 155(2), 1061-1067.
  • Baiguera, C., Boschetti, A., Raffetti, E., Zanini, B., Puoti, M., & Donato, F. (2018). Phyllanthus niruri versus Placebo for Chronic Hepatitis B Virus Infection: A Randomized Controlled Trial. Complementary medicine research, 25(6), 376-382.
  • Pharmacopoeia Commission of People’s Republic of China, 2000. The Pharmacopoeia of The People’s Republic of China (English ed.). Chemical Industry Press, Beijing, China
  • Du, J., He, Z. D., Jiang, R. W., Ye, W. C., Xu, H. X., & But, P. P. H. (2003). Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 62(8), 1235-1238.
  • Mosaddegh, M., Naghibi, F., Moazzeni, H., Pirani, A., & Esmaeili, S. (2012). Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. Journal of ethnopharmacology, 141(1), 80-95.
  • Grytdal, S. P., DeBess, E., Lee, L. E., Blythe, D., Ryan, P., Biggs, C., ... & Hall, A. J. (2016). Incidence of Norovirus and other viral pathogens that cause acute gastroenteritis (AGE) among Kaiser Permanente member populations in the United States, 2012–2013. PloS one, 11(4).
  • Zheng, X. L., & Xing, F. W. (2009). Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. Journal of Ethnopharmacology, 124(2), 197-210.
  • Shah, A., Bharati, K. A., Ahmad, J., & Sharma, M. P. (2015). New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. Journal of ethnopharmacology, 166, 119-128.
  • Gairola, S., Sharma, J., & Bedi, Y. S. (2014). A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. Journal of Ethnopharmacology, 155(2), 925-986.
  • Wang, B., Wei, Y., Zhao, X., Tian, X., Ning, J., Zhang, B., ... & Wang, C. (2018). Unusual ent-atisane type diterpenoids with 2-oxopropyl skeleton from the roots of Euphorbia ebracteolata and their antiviral activity against human rhinovirus 3 and enterovirus 71. Bioorganic chemistry, 81, 234-240.
  • Hutchings, A., Haxton Scott, A., Lewis, G., Cunningham, A., 1996. Zulu Medicinal Plants: An Inventory. University of Natal Press, Pietermaritzburg; University of Zululand/National Botanical Institute, Pietermaritzburg/KwaDlangezwa/Cape Town.
  • Van Koenen, E., 2001. Medicinal, Poisonous and Edible Plants in Namibia. Klaus Hess Verlag, Windhoek
  • Anywar, G., Kakudidi, E., Byamukama, R., Mukonzo, J., Schubert, A., & Oryem-Origa, H. (2020). Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda. Journal of ethnopharmacology, 246, 112205.
  • Bonet, M. À., Parada, M., Selga, A., & Valles, J. (1999). Studies on pharmaceutical ethnobotany in the regions of L’Alt Emporda and Les Guilleries (Catalonia, Iberian Peninsula). Journal of Ethnopharmacology, 68(1-3), 145-168.
  • Yaseen, G., Ahmad, M., Sultana, S., Alharrasi, A. S., Hussain, J., & Zafar, M. (2015). Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan. Journal of ethnopharmacology, 163, 43-59.
  • Parvez, M. K., Al‐Dosari, M. S., Alam, P., Rehman, M., Alajmi, M. F., & Alqahtani, A. S. (2019). The anti‐hepatitis B virus therapeutic potential of anthraquinones derived from Aloe vera. Phytotherapy Research, 33(11), 2960-2970.
  • Carrió, E., & Vallès, J. (2012). Ethnobotany of medicinal plants used in eastern Mallorca (Balearic Islands, Mediterranean Sea). Journal of Ethnopharmacology, 141(3), 1021-1040.
  • Agelet, A., & Valles, J. (2003). Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part II. New or very rare uses of previously known medicinal plants. Journal of Ethnopharmacology, 84(2-3), 211-227.
  • Scherrer, A. M., Motti, R., & Weckerle, C. S. (2005). Traditional plant use in the areas of monte vesole and ascea, cilento national park (Campania, Southern Italy). Journal of ethnopharmacology, 97(1), 129-143.
  • Pieroni, A., Quave, C. L., & Santoro, R. F. (2004). Folk pharmaceutical knowledge in the territory of the Dolomiti Lucane, inland southern Italy. Journal of Ethnopharmacology, 95(2-3), 373-384.
  • Bisignano, C., Mandalari, G., Smeriglio, A., Trombetta, D., Pizzo, M. M., Pennisi, R., & Sciortino, M. T. (2017). Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses, 9(7), 178.
  • Musarra-Pizzo, M., Ginestra, G., Smeriglio, A., Pennisi, R., Sciortino, M. T., & Mandalari, G. (2019). The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients, 11(10), 2355.
  • Li, S., Long, C., Liu, F., Lee, S., Guo, Q., Li, R., & Liu, Y. (2006). Herbs for medicinal baths among the traditional Yao communities of China. Journal of ethnopharmacology, 108(1), 59-67.
  • Panyadee, P., Balslev, H., Wangpakapattanawong, P., & Inta, A. (2019). Medicinal plants in homegardens of four ethnic groups in Thailand. Journal of ethnopharmacology, 239, 111927.
  • de Boer, H. J., Lamxay, V., & Björk, L. (2012). Comparing medicinal plant knowledge using similarity indices: a case of the Brou, Saek and Kry in Lao PDR. Journal of Ethnopharmacology, 141(1), 481-500.
  • Au, D. T., Wu, J., Jiang, Z., Chen, H., Lu, G., & Zhao, Z. (2008). Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. Journal of Ethnopharmacology, 117(1), 41-50.
  • Chen, X., Wang, Z., Yang, Z., Wang, J., Xu, Y., Tan, R. X., & Li, E. (2011). Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation. Antiviral research, 92(2), 341-345.
  • Li, T., Liu, L., Wu, H., Chen, S., Zhu, Q., Gao, H., ... & Peng, T. (2017). Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb. Antiviral research, 144, 273-280.
  • Salguero, C. P. (2003). A compendium of traditional Thai herbal medicine. In A Thai Herbal-traditional Recipes for Health and Harmony. Findhorn Press Scotland.
  • Djakpo, O., & Yao, W. (2010). Rhus chinensis and Galla Chinensis–folklore to modern evidence. Phytotherapy Research, 24(12), 1739-1747.
  • Reichling, J., Neuner, A., Sharaf, M., Harkenthal, M., & Schnitzler, P. (2009). Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 64(8), 538-541.
  • Dawn Tung Au, Jialin Wu, Zhihong Jiang, Hubiao Chen, Guanghua Lu, Zhongzhen Zhao (2008). Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. Journal of Ethnopharmacology. 117(1), 41-50.
  • Huang, Q., Zhang, S., Huang, R., Wei, L., Chen, Y., Lv, S., ... & Lin, X. (2013). Isolation and identification of an anti-hepatitis B virus compound from Hydrocotyle sibthorpioides Lam. Journal of ethnopharmacology, 150(2), 568-575.
  • Suroowan, S., Pynee, K. B., & Mahomoodally, M. F. (2019). A comprehensive review of ethnopharmacologically important medicinal plant species from Mauritius. South African Journal of Botany.
  • Kim, H., & Song, M. J. (2011). Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. Journal of Ethnopharmacology, 134(3), 676-696.
  • Thakur, M., Asrani, R. K., Thakur, S., Sharma, P. K., Patil, R. D., Lal, B., & Parkash, O. (2016). Observations on traditional usage of ethnomedicinal plants in humans and animals of Kangra and Chamba districts of Himachal Pradesh in north-western Himalaya, India. Journal of ethnopharmacology, 191, 280-300.
  • Zhao, Y., Geng, C. A., Sun, C. L., Ma, Y. B., Huang, X. Y., Cao, T. W., ... & Chen, J. J. (2014). Polyacetylenes and anti-hepatitis B virus active constituents from Artemisia capillaris. Fitoterapia, 95, 187-193.
  • Geng, C. A., Yang, T. H., Huang, X. Y., Yang, J., Ma, Y. B., Li, T. Z., ... & Chen, J. J. (2018). Anti-hepatitis B virus effects of the traditional Chinese herb Artemisia capillaris and its active enynes. Journal of ethnopharmacology, 224, 283-289.
  • Weiss, R. A. (1993). How does HIV cause AIDS?. Science, 260(5112), 1273-1279.
  • Douek, D. C., Roederer, M., & Koup, R. A. (2009). Emerging concepts in the immunopathogenesis of AIDS. Annual review of medicine, 60, 471-484.
  • Powell, M. K., Benková, K., Selinger, P., Dogoši, M., Luňáčková, I. K., Koutníková, H., ... & Eis, V. (2016). Opportunistic Infections in HIV-Infected Patients Differ Strongly in Frequencies and Spectra between Patients with Low CD4+ Cell Counts Examined Postmortem and Compensated Patients Examined Antemortem Irrespective of the HAART Era. PloS one, 11(9).
  • Harvey, R. A. (2007). Microbiology. Lippincott Williams & Wilkins.
  • Kuiken, C., Foley, B., Hahn, B., Marx, P., McCutchan, F., Mellors, J., ... & Korber, B. (2001). HIV sequence compendium 2001. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM.
  • WHO, 2019. “HIV Fact Sheet”. https://www.who.int/news-room/fact-sheets/detail/hiv-aids. Retrieved on 25 March 2019.
  • Chinsembu, K. C. (2019). Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Revista Brasileira de Farmacognosia.
  • Mustafa, B., Hajdari, A., Pulaj, B., Quave, C. L., & Pieroni, A. (2020). Medical and food ethnobotany among Albanians and Serbs living in the Shtërpcë/Štrpce area, South Kosovo. Journal of Herbal Medicine, 100344.
  • Savić, J., Mačukanović-Jocić, M., & Jarić, S. (2019). Medical ethnobotany on the Javor Mountain (Bosnia and Herzegovina). European Journal of Integrative Medicine, 27, 52-64.
  • El-Gharbaoui, A., Benítez, G., González-Tejero, M. R., Molero-Mesa, J., & Merzouki, A. (2017). Comparison of Lamiaceae medicinal uses in eastern Morocco and eastern Andalusia and in Ibn al-Baytar's Compendium of Simple Medicaments (13th century CE). Journal of ethnopharmacology, 202, 208-224.
  • Philander, L. A. (2011). An ethnobotany of Western Cape Rasta bush medicine. Journal of ethnopharmacology, 138(2), 578-594.
  • Kreis, W., Kaplan, M.H., Freeman, J., Sun, D.K., Sarin, P.S. Inhibition of HIV replication byHyssop officinalisextracts.Antivir. Res.1990,14, 323–337
  • Geuenich, S., Goffinet, C., Venzke, S., Nolkemper, S., Baumann, I., Plinkert, P., ... & Keppler, O. T. (2008). Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology, 5(1), 27.
  • Kulkosky, J., Culnan, D.M., Roman, J., Dornadula, G., Schnell, M., Boyd, M.R., Pomerantz, R.J. Prostratin:Activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART.Blood2001,98, 3006–3015.
  • Rullas, J., Bermejo, M., García-Pérez, J., Beltán, M., González, N., Hezareh, M., Brown, S.J., Alcamí, J.Prostratin induces HIV activation and downregulates HIV receptors in peripheral blood lymphocytes.Antivir. Ther.2004,9, 545–554
  • Salehi, B., Kumar, N. V. A., Şener, B., Sharifi-Rad, M., Kılıç, M., Mahady, G. B., ... & Ayatollahi, S. A. (2018). Medicinal plants used in the treatment of human immunodeficiency virus. International journal of molecular sciences, 19(5), 1459.
  • Kapewangolo, P., Omolo, J. J., Fonteh, P., Kandawa-Schulz, M., & Meyer, D. (2017). Triterpenoids from Ocimum labiatum activates latent HIV-1 expression in vitro: Potential for use in adjuvant therapy. Molecules, 22(10), 1703.
  • Willcox, M. L., Burton, S., Oyweka, R., Namyalo, R., Challand, S., & Lindsey, K. (2011). Evaluation and pharmacovigilance of projects promoting cultivation and local use of Artemisia annua for malaria. Malaria journal, 10(1), 84.
  • Lubbe, A., Seibert, I., Klimkait, T., & Van der Kooy, F. (2012). Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. Journal of ethnopharmacology, 141(3), 854-859.
  • Chturvedi, G. N., Tomar, G. S., Tiwari, S. K., & Singh, K. P. (1983). Clinical studies on Kalmegh (Andrographis paniculata Nees) in infective hepatitis. Ancient science of life, 2(4), 208.
  • Niranjan Reddy, V. L., Malla Reddy, S., Ravikanth, V., Krishnaiah, P., Venkateshwar Goud, T., Rao, T. P., ... & Venkateswarlu, Y. (2005). A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Natural Product Research, 19(3), 223-230.
  • Caceres, D. D., Hancke, J. L., Burgos, R. A., & Wikman, G. K. (1997). Prevention of common colds with Andrographis paniculata dried extract. A pilot double blind trial. Phytomedicine, 4(2), 101-104.
  • Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ. (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 14: 333–338.
  • Safa, O., Soltanipoor, M. A., Rastegar, S., Kazemi, M., Dehkordi, K. N., & Ghannadi, A. (2013). An ethnobotanical survey on hormozgan province, Iran. Avicenna journal of phytomedicine, 3(1), 64.
  • Duke, N. C. (1991). A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Australian Systematic Botany, 4(2), 299-324.
  • Rao, G. N., & Murty, P. P. The Journal of Ethnobiology and Traditional Medicine.
  • Behbahani, M. (2014). Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. International immunopharmacology, 23(1), 262-266.
  • Suárez, M. E. (2019). Medicines in the forest: Ethnobotany of wild medicinal plants in the pharmacopeia of the Wichí people of Salta province (Argentina). Journal of ethnopharmacology, 231, 525-544.
  • Mhlongo, L. S., & Van Wyk, B. E. (2019). Zulu medicinal ethnobotany: new records from the Amandawe area of KwaZulu-Natal, South Africa. South African Journal of Botany, 122, 266-290.
  • Lam, S. K., & Ng, T. B. (2010). Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds. Acta Biochimica Polonica, 57(3).
  • Modi, M., Dezzutti, C. S., Kulshreshtha, S., Rawat, A. K. S., Srivastava, S. K., Malhotra, S., ... & Gupta, S. K. (2013). Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virology journal, 10(1), 309.
  • Lago, J. H. G., Tezoto, J., Yazbek, P. B., Cassas, F., Santos, J. D. F., & Rodrigues, E. (2016). Exudates used as medicine by the" caboclos river-dwellers" of the Unini River, AM, Brazil–classification based in their chemical composition. Revista Brasileira de Farmacognosia, 26(3), 379-384.
  • Ribeiro, R. V., Bieski, I. G. C., Balogun, S. O., & de Oliveira Martins, D. T. (2017). Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of ethnopharmacology, 205, 69-102.
  • Kudo, E., Taura, M., Matsuda, K., Shimamoto, M., Kariya, R., Goto, H., ... & Okada, S. (2013). Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorganic & medicinal chemistry letters, 23(3), 606-609.
  • César, G. Z. J., Alfonso, M. G. G., Marius, M. M., Elizabeth, E. M., Ángel, C. B. M., Maira, H. R., ... & Ricardo, R. C. (2011). Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia, 82(7), 1027-1034.
  • Sriwilaijaroen, N., Fukumoto, S., Kumagai, K., Hiramatsu, H., Odagiri, T., Tashiro, M., & Suzuki, Y. (2012). Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antiviral research, 94(2), 139-146.
  • Glatthaar-Saalmüller, B., Fal, A. M., Schönknecht, K., Conrad, F., Sievers, H., & Saalmüller, A. (2015). Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract. Phytomedicine, 22(10), 911-920.
  • Chandegara, V. K., & Varshney, A. K. (2013). Aloe vera L. processing and products: A review. International Journal of Medicinal and Aromatic Plants, 3(4), 492-506.
  • Sánchez-Machado, D. I., López-Cervantes, J., Sendón, R., & Sanches-Silva, A. (2017). Aloe vera: Ancient knowledge with new frontiers. Trends in Food Science & Technology, 61, 94-102.
  • Tumura & Co., About Kampo, 2016, https://www.tsumura.co. jp/english/kampo/.
  • Nomura, T., Fukushi, M., Oda, K., Higashiura, A., Irie, T., & Sakaguchi, T. (2019). Effects of Traditional Kampo Drugs and Their Constituent Crude Drugs on Influenza Virus Replication In Vitro: Suppression of Viral Protein Synthesis by Glycyrrhizae Radix. Evidence-Based Complementary and Alternative Medicine, 2019.
  • Ji, S., Li, Z., Song, W., Wang, Y., Liang, W., Li, K., ... & Yu, S. (2016). Bioactive constituents of Glycyrrhiza uralensis (Licorice): discovery of the effective components of a traditional herbal medicine. Journal of Natural Products, 79(2), 281-292.
  • Wu, S., Patel, K. B., Booth, L. J., Metcalf, J. P., Lin, H. K., & Wu, W. (2010). Protective essential oil attenuates influenza virus infection: an in vitro study in MDCK cells. BMC complementary and alternative medicine, 10(1), 69.
  • Ceuterick, M., Vandebroek, I., Torry, B., & Pieroni, A. (2008). Cross-cultural adaptation in urban ethnobotany: the Colombian folk pharmacopoeia in London. Journal of ethnopharmacology, 120(3), 342-359.
  • Parada, M., Carrió, E., Bonet, M. À., & Vallès, J. (2009). Ethnobotany of the Alt Emporda region (Catalonia, Iberian Peninsula): plants used in human traditional medicine. Journal of ethnopharmacology, 124(3), 609-618.
  • Rajasekaran, D., Palombo, E. A., Yeo, T. C., Ley, D. L. S., Tu, C. L., Malherbe, F., & Grollo, L. (2013). Identification of traditional medicinal plant extracts with novel anti-influenza activity. PloS one, 8(11).
  • Kim, H., & Song, M. J. (2011). Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. Journal of Ethnopharmacology, 134(3), 676-696.
  • Won, J. N., Lee, S. Y., Song, D. S., & Poo, H. Y. (2013). Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. Journal of microbiology and biotechnology, 23(1), 125-130.
  • Ling, L. J., Lu, Y., Zhang, Y. Y., Zhu, H. Y., Tu, P., Li, H., & Chen, D. F. (2020). Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine, 67, 153150.
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 69.
  • Zumla, A., Hui, D. S., & Perlman, S. (2015). Middle East respiratory syndrome. The Lancet, 386(9997), 995-1007.
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology.
  • Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends, 14(1), 69-71.
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Yu, T. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513.
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., ... & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3), 269-271.
  • Leon Caly, Julian D. Druce, Mike G. Catton, David A. Jans, Kylie M. Wagstaff (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research.
  • Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612-616.
  • Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., ... & Li, R. S. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research, 67(1), 18-23.
  • Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., ... & Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research, 68(1), 36-42.
  • Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., ... & Rho, M. C. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry, 18(22), 7940-7947.
  • Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y. W., Jee, J. G., ... & Jeong, Y. J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & medicinal chemistry letters, 22(12), 4049-4054.
  • Lau, K. M., Lee, K. M., Koon, C. M., Cheung, C. S. F., Lau, C. P., Ho, H. M., ... & Tsui, S. K. W. (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 118(1), 79-85.
  • Ang, L., Lee, H. W., Choi, J. Y., Zhang, J., & Lee, M. S. (2020). Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integrative Medicine Research, 100407.
  • Xi, S., & Gong, Y. (2017). Essentials of Chinese Materia Medica and Medical Formulas: New Century Traditional Chinese Medicine. Academic Press.
  • Hu, X., Fu, Y., Lu, X., Zhang, Z., Zhang, W., Cao, Y., & Zhang, N. (2017). Protective effects of platycodin D on lipopolysaccharide-induced acute lung injury by activating LXRα–ABCA1 signaling pathway. Frontiers in immunology, 7, 644.
  • Guo, S., Jiang, K., Wu, H., Yang, C., Yang, Y., Yang, J., ... & Deng, G. (2018). Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation. Frontiers in pharmacology, 9, 982.
  • Julia Helen Wermig-Morgan (2020). Elderberry is anti-bacterial, anti-viral and modulates the immune system: anti-bacterial, anti-viral and immunomodulatory non-clinical (in-vitro) effects of elderberry fruit and flowers (Sambucus nigra): a systematic review (Master’s Thesis, University of Oxford. Oxford, United Kingdom) Retrieved from https://www.researchgate.net/publication/339237008_Elderberry_is_anti-bacterial_anti-viral_and_modulates_the_immune_system_anti-bacterial_anti-viral_and_immunomodulatory_non-clinical_in-vitro_effects_of_elderberry_fruit_and_flowers_Sambucus_nigra_a_sy
  • Hand, J., Rose, E. B., Salinas, A., Lu, X., Sakthivel, S. K., Schneider, E., & Watson, J. T. (2018). Severe Respiratory Illness Outbreak Associated with Human Coronavirus NL63 in a Long-Term Care Facility. Emerging infectious diseases, 24(10), 1964.
  • Weng, J. R., Lin, C. S., Lai, H. C., Lin, Y. P., Wang, C. Y., Tsai, Y. C., ... & Lin, C. W. (2019). Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research, 273, 197767.
  • Yang, K.C., Chiu, S.T. (1998). Caprifoliaceae. Flora of Taiwan. 2nd ed.
  • Thompson, C. J. S. (1928). The History and Lore of Cinchona. British Medical Journal, 1188-1190.
  • Urdang, G. (1945). The legend of Cinchona. The Scientific Monthly, 61(1), 17-20.
  • Redeploying plant defences. Nat. Plants 6, 177 (2020).

Traditional medicinal plants used for the treatment of viral infections: A short review

Year 2020, Volume: 1 Issue: 2, 29 - 48, 09.05.2020

Abstract

Viruses are among the most infectious microorganisms and have been present alongside humans throughout history. Viruses infecting humans can be divided into DNA or RNA viruses. It is important to be familiar with the viral replication cycles and the infection mechanisms of each class of viruses şn order to produce efficient vaccines and develop effective treatment regimens, which will help mankind prevent or minimize pandemics such as the current COVID-19 pandemic. Many antiviral drugs are used as broad spectrum to attack common factors of viral infections. However, absence of equal accessibility worldwide and cost of treatments and vaccines, together with the undesirable side effects of these drugs encourages us to venture into alternative treatment modalities. This short review will focus on plants used in traditional medical systems worldwide and their corresponding pharmacological trials, both in-vitro and in-vivo¬. Medicinal plants used for Herpesviridae and Hepatitis B virus was addressed when considering DNA viruses, while plants used to treat HIV, influenza, and the Coronaviridae family was discussed under the scope of RNA viruses. Our results indicate that many drugs were developed from natural sources and many plants are yet to be explored for their potential specific and broad-spectrum effects against common viral infections.

References

  • Waterson, A. P., & Wilkinson, L. (1978). An introduction to the history of virology. Cambridge University Press, Bentley House, 200 Euston Road, London NW1 2DB. Bentley House, 200 Euston Road, London NW1 2DB.
  • WHO, 2014. Retrieved from https://www.who.int/biologicals/vaccines/smallpox/en/ on 25 March 2020)
  • Huang, F., Wang, B. R., Wu, Y. Q., Wang, F. C., Zhang, J., & Wang, Y. G. (2016). Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World journal of gastroenterology, 22(35), 7999.
  • WHO, 2014. Smallpox. Retrieved from https://www.who.int/biologicals/vaccines/smallpox/en/ on 25 march 2020.
  • Casjens, S., & King, J. (1975). Virus assembly. Annual review of biochemistry, 44(1), 555-611.
  • Gelderblom, H. R. (1996). Structure and classification of viruses. In Medical Microbiology. 4th edition. University of Texas Medical Branch at Galveston.
  • Wagner R. Robert, Krug M. Robert (2020, April 2). Virus. Encyclopedia Britannica. Retrieved from https://www.britannica.com/science/virus/Evolution-of-new-virus-strains on 3 April 2020.
  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Viruses: Structure, function, and uses. In Molecular Cell Biology. 4th edition. WH Freeman.
  • Parker, F.; Nye, R.N. Studies on Filterable Viruses: II. Cultivation of Herpes Virus. Am J Pathol.1925,1, 337–340
  • Schaeffer, H. J., Gurwara, S., Vince, R., & Bittner, S. (1971). Novel substrate of adenosine deaminase. Journal of medicinal chemistry, 14(4), 367-369.
  • Birkmann, A., & Zimmermann, H. (2016). HSV antivirals–current and future treatment options. Current opinion in virology, 18, 9-13.
  • Treml, J., Gazdová, M., Šmejkal, K., Šudomová, M., Kubatka, P., & Hassan, S. T. (2020). Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses, 12(2), 154.
  • Brahmachari, G. (2012). Bioactive natural products: opportunities and challenges in medicinal chemistry. World Scientific
  • Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus research, 131(2), 111-120.
  • Naithani, R., Huma, L. C., Holland, L. E., Shukla, D., McCormick, D. L., Mehta, R. G., & Moriarty, R. M. (2008). Antiviral activity of phytochemicals: a comprehensive review. Mini reviews in medicinal chemistry, 8(11), 1106-1133.
  • Abad, M. J., Bedoya, L. M., Apaza, L., & Bermejo, P. (2012). Anti-infective flavonoids: an overview. In Bioactive Natural Products: Opportunities and Challenges in Medicinal Chemistry (pp. 443-473).
  • Bekut, M., Brkić, S., Kladar, N., Dragović, G., Gavarić, N., & Božin, B. (2018). Potential of selected Lamiaceae plants in anti (retro) viral therapy. Pharmacological research, 133, 301-314.
  • Bruhn, J. G., & Helmstedt, B. (1981). Ethnopharmacology: objectives, principles and perspectives. Natural products as medicinal agents.
  • Heinrich, M., Barnes, J., Prieto-Garcia, J., Gibbons, S., & Williamson, E. M. (2017). Fundamentals of Pharmacognosy and Phytotherapy. 3rd edition. Elsevier Health Sciences.
  • Denaro, M., Smeriglio, A., Barreca, D., De Francesco, C., Occhiuto, C., Milano, G., & Trombetta, D. (2019). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research.
  • WHO, 2017. "Herpes Simplex Virus Fact Sheet https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus. Retrieved on 25 March 2019.
  • WHO, 2019. "Hepatitis B Fact sheet”. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b. Retrieved on 25 March 2019.
  • Logan, C. M., & Rice, M. K. (1987). Medical and scientific abbreviations. Lippincott.
  • Ryu, W. S. (2016). Molecular virology of human pathogenic viruses. Academic Press.
  • Locarnini, S. (2004, February). Molecular virology of hepatitis B virus. In Seminars in liver disease (Vol. 24, No. S 1, pp. 3-10). Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.
  • Schillie, S. F., Murphy, T. V., Sawyer, M., Ly, K., Hughes, E., Jiles, R., ... & Ward, J. W. (2013). CDC guidance for evaluating health-care personnel for hepatitis B virus protection and for administering postexposure management.
  • Committee on Infectious Diseases. (2017). Elimination of perinatal hepatitis B: providing the first vaccine dose within 24 hours of birth. Pediatrics, 140(3), e20171870.
  • Vlietinck, A. J., Van Hoof, L., Totte, J., Lasure, A., Berghe, D. V., Rwangabo, P. C., & Mvukiyumwami, J. (1995). Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. Journal of ethnopharmacology, 46(1), 31-47.
  • MacBae, W. D., Hudson, J. B., & Towers, G. H. N. (1988). Studies on the pharmacological activity of Amazonian Euphorbiaceae. Journal of Ethnopharmacology, 22(2), 143-172.
  • Appendino, G., & Szallasi, A. (1997). Euphorbium: modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life sciences, 60(10), 681-696.
  • Shamsabadipour, S., Ghanadian, M., Saeedi, H., Rahimnejad, M. R., Mohammadi-Kamalabadi, M., Ayatollahi, S. M., & Salimzadeh, L. (2013). Triterpenes and steroids from Euphorbia denticulata Lam. with anti-Herpes symplex virus activity. Iranian journal of pharmaceutical research: IJPR, 12(4), 759.
  • Karimi, A., Rafieian-Kopaei, M., Moradi, M. T., & Alidadi, S. (2017). Anti–Herpes Simplex Virus Type-1 Activity and Phenolic Content of Crude Ethanol Extract and Four Corresponding Fractions of Quercus brantii L. Acorn. Journal of evidence-based complementary & alternative medicine, 22(3), 455-46
  • Liu, S. N., Hu, J., Tan, S. H., Wang, Q., Xu, J., Wang, Y., ... & Gu, Q. (2017). ent-Rosane diterpenoids from Euphorbia milii showing an Epstein–Barr virus lytic replication assay. RSC advances, 7(74), 46938-46947.
  • Kim, D. E., Jung, S., Ryu, H. W., Choi, M., Kang, M., Kang, H., ... & Kim, J. (2018). Selective oncolytic effect in Epstein-Barr virus (EBV)-associated gastric carcinoma through efficient lytic induction by Euphorbia extracts. Journal of Functional Foods, 42, 146-158.
  • Cheng, H. Y., Lin, T. C., Yang, C. M., Wang, K. C., Lin, L. T., & Lin, C. C. (2004). Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. Journal of Antimicrobial Chemotherapy, 53(4), 577-583.
  • Wei, W., Pan, Y., Chen, Y., Lin, C., Wei, T., & Zhao, S. (2005). Carboxylic acids from Phyllanthus urinaria. Chemistry of natural compounds, 41(1), 17-21.
  • Lans, C. (2007). Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. Journal of Ethnobiology and Ethnomedicine, 3(1), 3.
  • Roumy, V., Ruiz, L., Macedo, J. C. R., Gutierrez-Choquevilca, A. L., Samaillie, J., Encinas, L. A., ... & Dubuisson, J. (2020). Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resources. Journal of Ethnopharmacology, 112735.
  • Bae, K. H., Yun, P. Y., & Choi, Y. E. (2009). Induction and in vitro Proliferation of Adventitious Roots in Phyllanthus urinaria. Korean Journal of Plant Resources, 22(5), 454-460.
  • Yang, C. M., Cheng, H. Y., Lin, T. C., Chiang, L. C., & Lin, C. C. (2005). Acetone, ethanol and methanol extracts of Phyllanthus urinaria inhibit HSV-2 infection in vitro. Antiviral Research, 67(1), 24-30.
  • Yang, C. M., Cheng, H. Y., Lin, T. C., Chiang, L. C., & Lin, C. C. (2007). The in vitro activity of geraniin and 1, 3, 4, 6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. Journal of ethnopharmacology, 110(3), 555-558.
  • Cheng, H. Y., Yang, C. M., Lin, T. C., Lin, L. T., Chiang, L. C., & Lin, C. C. (2011). Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evidence-Based Complementary and Alternative Medicine, 2011.
  • Qi, W., Hua, L., & Gao, K. (2014). Chemical constituents of the plants from the genus Phyllanthus. Chemistry & biodiversity, 11(3), 364-395.
  • Del Barrio, G., & Parra, F. (2000). Evaluation of the antiviral activity of an aqueous extract from Phyllanthus orbicularis. Journal of ethnopharmacology, 72(1-2), 317-322.
  • Álvarez, Á. L., Dalton, K. P., Nicieza, I., Diñeiro, Y., Picinelli, A., Melón, S., ... & Parra, F. (2012). Bioactivity‐guided Fractionation of Phyllanthus orbicularis and Identification of the Principal Anti HSV‐2 Compounds. Phytotherapy Research, 26(10), 1513-1520.
  • Sheng Liu, Wanxing Wei, Kaichuang Shi, Xun Cao, Min Zhou, Zhiping Liu (2014). In vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. Journal of Ethnopharmacology. 155(2), 1061-1067.
  • Baiguera, C., Boschetti, A., Raffetti, E., Zanini, B., Puoti, M., & Donato, F. (2018). Phyllanthus niruri versus Placebo for Chronic Hepatitis B Virus Infection: A Randomized Controlled Trial. Complementary medicine research, 25(6), 376-382.
  • Pharmacopoeia Commission of People’s Republic of China, 2000. The Pharmacopoeia of The People’s Republic of China (English ed.). Chemical Industry Press, Beijing, China
  • Du, J., He, Z. D., Jiang, R. W., Ye, W. C., Xu, H. X., & But, P. P. H. (2003). Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 62(8), 1235-1238.
  • Mosaddegh, M., Naghibi, F., Moazzeni, H., Pirani, A., & Esmaeili, S. (2012). Ethnobotanical survey of herbal remedies traditionally used in Kohghiluyeh va Boyer Ahmad province of Iran. Journal of ethnopharmacology, 141(1), 80-95.
  • Grytdal, S. P., DeBess, E., Lee, L. E., Blythe, D., Ryan, P., Biggs, C., ... & Hall, A. J. (2016). Incidence of Norovirus and other viral pathogens that cause acute gastroenteritis (AGE) among Kaiser Permanente member populations in the United States, 2012–2013. PloS one, 11(4).
  • Zheng, X. L., & Xing, F. W. (2009). Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. Journal of Ethnopharmacology, 124(2), 197-210.
  • Shah, A., Bharati, K. A., Ahmad, J., & Sharma, M. P. (2015). New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. Journal of ethnopharmacology, 166, 119-128.
  • Gairola, S., Sharma, J., & Bedi, Y. S. (2014). A cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. Journal of Ethnopharmacology, 155(2), 925-986.
  • Wang, B., Wei, Y., Zhao, X., Tian, X., Ning, J., Zhang, B., ... & Wang, C. (2018). Unusual ent-atisane type diterpenoids with 2-oxopropyl skeleton from the roots of Euphorbia ebracteolata and their antiviral activity against human rhinovirus 3 and enterovirus 71. Bioorganic chemistry, 81, 234-240.
  • Hutchings, A., Haxton Scott, A., Lewis, G., Cunningham, A., 1996. Zulu Medicinal Plants: An Inventory. University of Natal Press, Pietermaritzburg; University of Zululand/National Botanical Institute, Pietermaritzburg/KwaDlangezwa/Cape Town.
  • Van Koenen, E., 2001. Medicinal, Poisonous and Edible Plants in Namibia. Klaus Hess Verlag, Windhoek
  • Anywar, G., Kakudidi, E., Byamukama, R., Mukonzo, J., Schubert, A., & Oryem-Origa, H. (2020). Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda. Journal of ethnopharmacology, 246, 112205.
  • Bonet, M. À., Parada, M., Selga, A., & Valles, J. (1999). Studies on pharmaceutical ethnobotany in the regions of L’Alt Emporda and Les Guilleries (Catalonia, Iberian Peninsula). Journal of Ethnopharmacology, 68(1-3), 145-168.
  • Yaseen, G., Ahmad, M., Sultana, S., Alharrasi, A. S., Hussain, J., & Zafar, M. (2015). Ethnobotany of medicinal plants in the Thar Desert (Sindh) of Pakistan. Journal of ethnopharmacology, 163, 43-59.
  • Parvez, M. K., Al‐Dosari, M. S., Alam, P., Rehman, M., Alajmi, M. F., & Alqahtani, A. S. (2019). The anti‐hepatitis B virus therapeutic potential of anthraquinones derived from Aloe vera. Phytotherapy Research, 33(11), 2960-2970.
  • Carrió, E., & Vallès, J. (2012). Ethnobotany of medicinal plants used in eastern Mallorca (Balearic Islands, Mediterranean Sea). Journal of Ethnopharmacology, 141(3), 1021-1040.
  • Agelet, A., & Valles, J. (2003). Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part II. New or very rare uses of previously known medicinal plants. Journal of Ethnopharmacology, 84(2-3), 211-227.
  • Scherrer, A. M., Motti, R., & Weckerle, C. S. (2005). Traditional plant use in the areas of monte vesole and ascea, cilento national park (Campania, Southern Italy). Journal of ethnopharmacology, 97(1), 129-143.
  • Pieroni, A., Quave, C. L., & Santoro, R. F. (2004). Folk pharmaceutical knowledge in the territory of the Dolomiti Lucane, inland southern Italy. Journal of Ethnopharmacology, 95(2-3), 373-384.
  • Bisignano, C., Mandalari, G., Smeriglio, A., Trombetta, D., Pizzo, M. M., Pennisi, R., & Sciortino, M. T. (2017). Almond skin extracts abrogate HSV-1 replication by blocking virus binding to the cell. Viruses, 9(7), 178.
  • Musarra-Pizzo, M., Ginestra, G., Smeriglio, A., Pennisi, R., Sciortino, M. T., & Mandalari, G. (2019). The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients, 11(10), 2355.
  • Li, S., Long, C., Liu, F., Lee, S., Guo, Q., Li, R., & Liu, Y. (2006). Herbs for medicinal baths among the traditional Yao communities of China. Journal of ethnopharmacology, 108(1), 59-67.
  • Panyadee, P., Balslev, H., Wangpakapattanawong, P., & Inta, A. (2019). Medicinal plants in homegardens of four ethnic groups in Thailand. Journal of ethnopharmacology, 239, 111927.
  • de Boer, H. J., Lamxay, V., & Björk, L. (2012). Comparing medicinal plant knowledge using similarity indices: a case of the Brou, Saek and Kry in Lao PDR. Journal of Ethnopharmacology, 141(1), 481-500.
  • Au, D. T., Wu, J., Jiang, Z., Chen, H., Lu, G., & Zhao, Z. (2008). Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. Journal of Ethnopharmacology, 117(1), 41-50.
  • Chen, X., Wang, Z., Yang, Z., Wang, J., Xu, Y., Tan, R. X., & Li, E. (2011). Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation. Antiviral research, 92(2), 341-345.
  • Li, T., Liu, L., Wu, H., Chen, S., Zhu, Q., Gao, H., ... & Peng, T. (2017). Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb. Antiviral research, 144, 273-280.
  • Salguero, C. P. (2003). A compendium of traditional Thai herbal medicine. In A Thai Herbal-traditional Recipes for Health and Harmony. Findhorn Press Scotland.
  • Djakpo, O., & Yao, W. (2010). Rhus chinensis and Galla Chinensis–folklore to modern evidence. Phytotherapy Research, 24(12), 1739-1747.
  • Reichling, J., Neuner, A., Sharaf, M., Harkenthal, M., & Schnitzler, P. (2009). Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 64(8), 538-541.
  • Dawn Tung Au, Jialin Wu, Zhihong Jiang, Hubiao Chen, Guanghua Lu, Zhongzhen Zhao (2008). Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. Journal of Ethnopharmacology. 117(1), 41-50.
  • Huang, Q., Zhang, S., Huang, R., Wei, L., Chen, Y., Lv, S., ... & Lin, X. (2013). Isolation and identification of an anti-hepatitis B virus compound from Hydrocotyle sibthorpioides Lam. Journal of ethnopharmacology, 150(2), 568-575.
  • Suroowan, S., Pynee, K. B., & Mahomoodally, M. F. (2019). A comprehensive review of ethnopharmacologically important medicinal plant species from Mauritius. South African Journal of Botany.
  • Kim, H., & Song, M. J. (2011). Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. Journal of Ethnopharmacology, 134(3), 676-696.
  • Thakur, M., Asrani, R. K., Thakur, S., Sharma, P. K., Patil, R. D., Lal, B., & Parkash, O. (2016). Observations on traditional usage of ethnomedicinal plants in humans and animals of Kangra and Chamba districts of Himachal Pradesh in north-western Himalaya, India. Journal of ethnopharmacology, 191, 280-300.
  • Zhao, Y., Geng, C. A., Sun, C. L., Ma, Y. B., Huang, X. Y., Cao, T. W., ... & Chen, J. J. (2014). Polyacetylenes and anti-hepatitis B virus active constituents from Artemisia capillaris. Fitoterapia, 95, 187-193.
  • Geng, C. A., Yang, T. H., Huang, X. Y., Yang, J., Ma, Y. B., Li, T. Z., ... & Chen, J. J. (2018). Anti-hepatitis B virus effects of the traditional Chinese herb Artemisia capillaris and its active enynes. Journal of ethnopharmacology, 224, 283-289.
  • Weiss, R. A. (1993). How does HIV cause AIDS?. Science, 260(5112), 1273-1279.
  • Douek, D. C., Roederer, M., & Koup, R. A. (2009). Emerging concepts in the immunopathogenesis of AIDS. Annual review of medicine, 60, 471-484.
  • Powell, M. K., Benková, K., Selinger, P., Dogoši, M., Luňáčková, I. K., Koutníková, H., ... & Eis, V. (2016). Opportunistic Infections in HIV-Infected Patients Differ Strongly in Frequencies and Spectra between Patients with Low CD4+ Cell Counts Examined Postmortem and Compensated Patients Examined Antemortem Irrespective of the HAART Era. PloS one, 11(9).
  • Harvey, R. A. (2007). Microbiology. Lippincott Williams & Wilkins.
  • Kuiken, C., Foley, B., Hahn, B., Marx, P., McCutchan, F., Mellors, J., ... & Korber, B. (2001). HIV sequence compendium 2001. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM.
  • WHO, 2019. “HIV Fact Sheet”. https://www.who.int/news-room/fact-sheets/detail/hiv-aids. Retrieved on 25 March 2019.
  • Chinsembu, K. C. (2019). Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Revista Brasileira de Farmacognosia.
  • Mustafa, B., Hajdari, A., Pulaj, B., Quave, C. L., & Pieroni, A. (2020). Medical and food ethnobotany among Albanians and Serbs living in the Shtërpcë/Štrpce area, South Kosovo. Journal of Herbal Medicine, 100344.
  • Savić, J., Mačukanović-Jocić, M., & Jarić, S. (2019). Medical ethnobotany on the Javor Mountain (Bosnia and Herzegovina). European Journal of Integrative Medicine, 27, 52-64.
  • El-Gharbaoui, A., Benítez, G., González-Tejero, M. R., Molero-Mesa, J., & Merzouki, A. (2017). Comparison of Lamiaceae medicinal uses in eastern Morocco and eastern Andalusia and in Ibn al-Baytar's Compendium of Simple Medicaments (13th century CE). Journal of ethnopharmacology, 202, 208-224.
  • Philander, L. A. (2011). An ethnobotany of Western Cape Rasta bush medicine. Journal of ethnopharmacology, 138(2), 578-594.
  • Kreis, W., Kaplan, M.H., Freeman, J., Sun, D.K., Sarin, P.S. Inhibition of HIV replication byHyssop officinalisextracts.Antivir. Res.1990,14, 323–337
  • Geuenich, S., Goffinet, C., Venzke, S., Nolkemper, S., Baumann, I., Plinkert, P., ... & Keppler, O. T. (2008). Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology, 5(1), 27.
  • Kulkosky, J., Culnan, D.M., Roman, J., Dornadula, G., Schnell, M., Boyd, M.R., Pomerantz, R.J. Prostratin:Activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART.Blood2001,98, 3006–3015.
  • Rullas, J., Bermejo, M., García-Pérez, J., Beltán, M., González, N., Hezareh, M., Brown, S.J., Alcamí, J.Prostratin induces HIV activation and downregulates HIV receptors in peripheral blood lymphocytes.Antivir. Ther.2004,9, 545–554
  • Salehi, B., Kumar, N. V. A., Şener, B., Sharifi-Rad, M., Kılıç, M., Mahady, G. B., ... & Ayatollahi, S. A. (2018). Medicinal plants used in the treatment of human immunodeficiency virus. International journal of molecular sciences, 19(5), 1459.
  • Kapewangolo, P., Omolo, J. J., Fonteh, P., Kandawa-Schulz, M., & Meyer, D. (2017). Triterpenoids from Ocimum labiatum activates latent HIV-1 expression in vitro: Potential for use in adjuvant therapy. Molecules, 22(10), 1703.
  • Willcox, M. L., Burton, S., Oyweka, R., Namyalo, R., Challand, S., & Lindsey, K. (2011). Evaluation and pharmacovigilance of projects promoting cultivation and local use of Artemisia annua for malaria. Malaria journal, 10(1), 84.
  • Lubbe, A., Seibert, I., Klimkait, T., & Van der Kooy, F. (2012). Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. Journal of ethnopharmacology, 141(3), 854-859.
  • Chturvedi, G. N., Tomar, G. S., Tiwari, S. K., & Singh, K. P. (1983). Clinical studies on Kalmegh (Andrographis paniculata Nees) in infective hepatitis. Ancient science of life, 2(4), 208.
  • Niranjan Reddy, V. L., Malla Reddy, S., Ravikanth, V., Krishnaiah, P., Venkateshwar Goud, T., Rao, T. P., ... & Venkateswarlu, Y. (2005). A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Natural Product Research, 19(3), 223-230.
  • Caceres, D. D., Hancke, J. L., Burgos, R. A., & Wikman, G. K. (1997). Prevention of common colds with Andrographis paniculata dried extract. A pilot double blind trial. Phytomedicine, 4(2), 101-104.
  • Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, Wells K, Wenner CA, Standish LJ. (2000) A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 14: 333–338.
  • Safa, O., Soltanipoor, M. A., Rastegar, S., Kazemi, M., Dehkordi, K. N., & Ghannadi, A. (2013). An ethnobotanical survey on hormozgan province, Iran. Avicenna journal of phytomedicine, 3(1), 64.
  • Duke, N. C. (1991). A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Australian Systematic Botany, 4(2), 299-324.
  • Rao, G. N., & Murty, P. P. The Journal of Ethnobiology and Traditional Medicine.
  • Behbahani, M. (2014). Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. International immunopharmacology, 23(1), 262-266.
  • Suárez, M. E. (2019). Medicines in the forest: Ethnobotany of wild medicinal plants in the pharmacopeia of the Wichí people of Salta province (Argentina). Journal of ethnopharmacology, 231, 525-544.
  • Mhlongo, L. S., & Van Wyk, B. E. (2019). Zulu medicinal ethnobotany: new records from the Amandawe area of KwaZulu-Natal, South Africa. South African Journal of Botany, 122, 266-290.
  • Lam, S. K., & Ng, T. B. (2010). Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds. Acta Biochimica Polonica, 57(3).
  • Modi, M., Dezzutti, C. S., Kulshreshtha, S., Rawat, A. K. S., Srivastava, S. K., Malhotra, S., ... & Gupta, S. K. (2013). Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virology journal, 10(1), 309.
  • Lago, J. H. G., Tezoto, J., Yazbek, P. B., Cassas, F., Santos, J. D. F., & Rodrigues, E. (2016). Exudates used as medicine by the" caboclos river-dwellers" of the Unini River, AM, Brazil–classification based in their chemical composition. Revista Brasileira de Farmacognosia, 26(3), 379-384.
  • Ribeiro, R. V., Bieski, I. G. C., Balogun, S. O., & de Oliveira Martins, D. T. (2017). Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. Journal of ethnopharmacology, 205, 69-102.
  • Kudo, E., Taura, M., Matsuda, K., Shimamoto, M., Kariya, R., Goto, H., ... & Okada, S. (2013). Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorganic & medicinal chemistry letters, 23(3), 606-609.
  • César, G. Z. J., Alfonso, M. G. G., Marius, M. M., Elizabeth, E. M., Ángel, C. B. M., Maira, H. R., ... & Ricardo, R. C. (2011). Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia, 82(7), 1027-1034.
  • Sriwilaijaroen, N., Fukumoto, S., Kumagai, K., Hiramatsu, H., Odagiri, T., Tashiro, M., & Suzuki, Y. (2012). Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antiviral research, 94(2), 139-146.
  • Glatthaar-Saalmüller, B., Fal, A. M., Schönknecht, K., Conrad, F., Sievers, H., & Saalmüller, A. (2015). Antiviral activity of an aqueous extract derived from Aloe arborescens Mill. against a broad panel of viruses causing infections of the upper respiratory tract. Phytomedicine, 22(10), 911-920.
  • Chandegara, V. K., & Varshney, A. K. (2013). Aloe vera L. processing and products: A review. International Journal of Medicinal and Aromatic Plants, 3(4), 492-506.
  • Sánchez-Machado, D. I., López-Cervantes, J., Sendón, R., & Sanches-Silva, A. (2017). Aloe vera: Ancient knowledge with new frontiers. Trends in Food Science & Technology, 61, 94-102.
  • Tumura & Co., About Kampo, 2016, https://www.tsumura.co. jp/english/kampo/.
  • Nomura, T., Fukushi, M., Oda, K., Higashiura, A., Irie, T., & Sakaguchi, T. (2019). Effects of Traditional Kampo Drugs and Their Constituent Crude Drugs on Influenza Virus Replication In Vitro: Suppression of Viral Protein Synthesis by Glycyrrhizae Radix. Evidence-Based Complementary and Alternative Medicine, 2019.
  • Ji, S., Li, Z., Song, W., Wang, Y., Liang, W., Li, K., ... & Yu, S. (2016). Bioactive constituents of Glycyrrhiza uralensis (Licorice): discovery of the effective components of a traditional herbal medicine. Journal of Natural Products, 79(2), 281-292.
  • Wu, S., Patel, K. B., Booth, L. J., Metcalf, J. P., Lin, H. K., & Wu, W. (2010). Protective essential oil attenuates influenza virus infection: an in vitro study in MDCK cells. BMC complementary and alternative medicine, 10(1), 69.
  • Ceuterick, M., Vandebroek, I., Torry, B., & Pieroni, A. (2008). Cross-cultural adaptation in urban ethnobotany: the Colombian folk pharmacopoeia in London. Journal of ethnopharmacology, 120(3), 342-359.
  • Parada, M., Carrió, E., Bonet, M. À., & Vallès, J. (2009). Ethnobotany of the Alt Emporda region (Catalonia, Iberian Peninsula): plants used in human traditional medicine. Journal of ethnopharmacology, 124(3), 609-618.
  • Rajasekaran, D., Palombo, E. A., Yeo, T. C., Ley, D. L. S., Tu, C. L., Malherbe, F., & Grollo, L. (2013). Identification of traditional medicinal plant extracts with novel anti-influenza activity. PloS one, 8(11).
  • Kim, H., & Song, M. J. (2011). Analysis and recordings of orally transmitted knowledge about medicinal plants in the southern mountainous region of Korea. Journal of Ethnopharmacology, 134(3), 676-696.
  • Won, J. N., Lee, S. Y., Song, D. S., & Poo, H. Y. (2013). Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. Journal of microbiology and biotechnology, 23(1), 125-130.
  • Ling, L. J., Lu, Y., Zhang, Y. Y., Zhu, H. Y., Tu, P., Li, H., & Chen, D. F. (2020). Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine, 67, 153150.
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology journal, 16(1), 69.
  • Zumla, A., Hui, D. S., & Perlman, S. (2015). Middle East respiratory syndrome. The Lancet, 386(9997), 995-1007.
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology.
  • Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends, 14(1), 69-71.
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Yu, T. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513.
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., ... & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research, 30(3), 269-271.
  • Leon Caly, Julian D. Druce, Mike G. Catton, David A. Jans, Kylie M. Wagstaff (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research.
  • Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612-616.
  • Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., ... & Li, R. S. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research, 67(1), 18-23.
  • Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., ... & Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research, 68(1), 36-42.
  • Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., ... & Rho, M. C. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry, 18(22), 7940-7947.
  • Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y. W., Jee, J. G., ... & Jeong, Y. J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & medicinal chemistry letters, 22(12), 4049-4054.
  • Lau, K. M., Lee, K. M., Koon, C. M., Cheung, C. S. F., Lau, C. P., Ho, H. M., ... & Tsui, S. K. W. (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 118(1), 79-85.
  • Ang, L., Lee, H. W., Choi, J. Y., Zhang, J., & Lee, M. S. (2020). Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integrative Medicine Research, 100407.
  • Xi, S., & Gong, Y. (2017). Essentials of Chinese Materia Medica and Medical Formulas: New Century Traditional Chinese Medicine. Academic Press.
  • Hu, X., Fu, Y., Lu, X., Zhang, Z., Zhang, W., Cao, Y., & Zhang, N. (2017). Protective effects of platycodin D on lipopolysaccharide-induced acute lung injury by activating LXRα–ABCA1 signaling pathway. Frontiers in immunology, 7, 644.
  • Guo, S., Jiang, K., Wu, H., Yang, C., Yang, Y., Yang, J., ... & Deng, G. (2018). Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation. Frontiers in pharmacology, 9, 982.
  • Julia Helen Wermig-Morgan (2020). Elderberry is anti-bacterial, anti-viral and modulates the immune system: anti-bacterial, anti-viral and immunomodulatory non-clinical (in-vitro) effects of elderberry fruit and flowers (Sambucus nigra): a systematic review (Master’s Thesis, University of Oxford. Oxford, United Kingdom) Retrieved from https://www.researchgate.net/publication/339237008_Elderberry_is_anti-bacterial_anti-viral_and_modulates_the_immune_system_anti-bacterial_anti-viral_and_immunomodulatory_non-clinical_in-vitro_effects_of_elderberry_fruit_and_flowers_Sambucus_nigra_a_sy
  • Hand, J., Rose, E. B., Salinas, A., Lu, X., Sakthivel, S. K., Schneider, E., & Watson, J. T. (2018). Severe Respiratory Illness Outbreak Associated with Human Coronavirus NL63 in a Long-Term Care Facility. Emerging infectious diseases, 24(10), 1964.
  • Weng, J. R., Lin, C. S., Lai, H. C., Lin, Y. P., Wang, C. Y., Tsai, Y. C., ... & Lin, C. W. (2019). Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research, 273, 197767.
  • Yang, K.C., Chiu, S.T. (1998). Caprifoliaceae. Flora of Taiwan. 2nd ed.
  • Thompson, C. J. S. (1928). The History and Lore of Cinchona. British Medical Journal, 1188-1190.
  • Urdang, G. (1945). The legend of Cinchona. The Scientific Monthly, 61(1), 17-20.
  • Redeploying plant defences. Nat. Plants 6, 177 (2020).
There are 156 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences, Clinical Sciences
Journal Section Review Articles
Authors

İsmail Uzar This is me 0000-0002-5706-297X

Fatıma Uzar 0000-0002-8580-3712

Publication Date May 9, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Uzar, İ., & Uzar, F. (2020). Traditional medicinal plants used for the treatment of viral infections: A short review. Bütünleyici Ve Anadolu Tıbbı Dergisi, 1(2), 29-48.

Journal of Integrative and Anatolian Medicine

Bütünleyici ve Anadolu Tıbbı Dergisi




by-nc-nd.png