Research Article
BibTex RIS Cite

Mathematical behavior of the solutions of a class of hyperbolic-type equation

Year 2018, Volume: 20 Issue: 3, 117 - 128, 29.10.2018
https://doi.org/10.25092/baunfbed.483072

Abstract

In this paper, we consider hyperbolic-type equations with initial and Dirichlet boundary conditions in a bounded domain. Under some suitable assumptions on the initial data and source term, we obtain nonexistence of global solutions for arbitrary initial energy.

References

  • Georgiev, V., Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source term, Journal of Differential Equations, 109, 295-308, (1994).
  • Levine, H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = -Au + F(u), Transactions of the American Mathematical Society,, 192, 1-21, (1974).
  • Levine, H.A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM Journal on Applied Mathematics, 5, 138-146, (1974).
  • Messaoudi, S.A., Blow up in a nonlinearly damped wave equation, Mathematische Nachrichten, 231, 105-111, (2001).
  • Vitillaro, E., Global existence theorems for a class of evolution equations with dissipation, Archive for Rational Mechanics and Analysis, 149, 155-182 (1999).
  • Messaoudi, S. A., Global existence and nonexistence in a system of Petrovsky, Journal of Mathematical Analysis and Applications, 265(2), 296-308, (2002).
  • Wu, S.T., Tsai, L.Y., On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese Journal of Mathematics, 13(2A), 545-558 (2009).
  • Chen, W., Zhou, Y., Global nonexistence for a semilinear Petrovsky equation, Nonlinear Analysis, 70, 3203-3208, (2009).
  • Alshin, A.B., Korpusov, M.O., Sveshnikov, A.G., Blow up in nonlinear Sobolev type equations, Walter De Gruyter, 2011.
  • Hu, B., Blow up theories for semilinear parabolic equations, Springer, 2011.
  • Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, 1995.
  • Adams, R.A., Fournier, J.J.F., Sobolev Spaces, Academic Press, 2003.
  • Pişkin, E., Sobolev Spaces, Seçkin Publishing, 2017. (in Turkish).
  • Pişkin, E., Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Mathematics, 13, 408-420, (2015).
  • Li, M.R., Tsai, L.Y., Existence and nonexistence of global solutions of some system of semi-linear wave equations, Nonlinear Analysis, 54(8), 1397-1415, (2003).
  • Zhou, Y., Global existence and nonexistence for a nonlinear wave equation with damping and source terms, Mathematische Nachrichten, 278(11), 1341-1358, (2005).

Hiperbolik tipten bir denklemin çözümlerinin matematiksel davranışı

Year 2018, Volume: 20 Issue: 3, 117 - 128, 29.10.2018
https://doi.org/10.25092/baunfbed.483072

Abstract

Bu makalede sınırlı bir bölgede hiperbolik tipten başlangıç ve Dirichlet sınır koşullu problem ele alınmıştır. Başlangıç ve kaynak terim üzerine bırakılan bazı uygun koşullar altında çözümlerin global yokluğu keyfi başlangıç enerjisi için çalışılmıştır.

References

  • Georgiev, V., Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source term, Journal of Differential Equations, 109, 295-308, (1994).
  • Levine, H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = -Au + F(u), Transactions of the American Mathematical Society,, 192, 1-21, (1974).
  • Levine, H.A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM Journal on Applied Mathematics, 5, 138-146, (1974).
  • Messaoudi, S.A., Blow up in a nonlinearly damped wave equation, Mathematische Nachrichten, 231, 105-111, (2001).
  • Vitillaro, E., Global existence theorems for a class of evolution equations with dissipation, Archive for Rational Mechanics and Analysis, 149, 155-182 (1999).
  • Messaoudi, S. A., Global existence and nonexistence in a system of Petrovsky, Journal of Mathematical Analysis and Applications, 265(2), 296-308, (2002).
  • Wu, S.T., Tsai, L.Y., On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Taiwanese Journal of Mathematics, 13(2A), 545-558 (2009).
  • Chen, W., Zhou, Y., Global nonexistence for a semilinear Petrovsky equation, Nonlinear Analysis, 70, 3203-3208, (2009).
  • Alshin, A.B., Korpusov, M.O., Sveshnikov, A.G., Blow up in nonlinear Sobolev type equations, Walter De Gruyter, 2011.
  • Hu, B., Blow up theories for semilinear parabolic equations, Springer, 2011.
  • Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyter, 1995.
  • Adams, R.A., Fournier, J.J.F., Sobolev Spaces, Academic Press, 2003.
  • Pişkin, E., Sobolev Spaces, Seçkin Publishing, 2017. (in Turkish).
  • Pişkin, E., Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms, Open Mathematics, 13, 408-420, (2015).
  • Li, M.R., Tsai, L.Y., Existence and nonexistence of global solutions of some system of semi-linear wave equations, Nonlinear Analysis, 54(8), 1397-1415, (2003).
  • Zhou, Y., Global existence and nonexistence for a nonlinear wave equation with damping and source terms, Mathematische Nachrichten, 278(11), 1341-1358, (2005).
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Erhan Pişkin 0000-0001-6587-4479

Hazal Yüksekkaya This is me 0000-0002-1863-2909

Publication Date October 29, 2018
Submission Date August 11, 2018
Published in Issue Year 2018 Volume: 20 Issue: 3

Cite

APA Pişkin, E., & Yüksekkaya, H. (2018). Mathematical behavior of the solutions of a class of hyperbolic-type equation. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(3), 117-128. https://doi.org/10.25092/baunfbed.483072
AMA Pişkin E, Yüksekkaya H. Mathematical behavior of the solutions of a class of hyperbolic-type equation. BAUN Fen. Bil. Enst. Dergisi. October 2018;20(3):117-128. doi:10.25092/baunfbed.483072
Chicago Pişkin, Erhan, and Hazal Yüksekkaya. “Mathematical Behavior of the Solutions of a Class of Hyperbolic-Type Equation”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 3 (October 2018): 117-28. https://doi.org/10.25092/baunfbed.483072.
EndNote Pişkin E, Yüksekkaya H (October 1, 2018) Mathematical behavior of the solutions of a class of hyperbolic-type equation. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 3 117–128.
IEEE E. Pişkin and H. Yüksekkaya, “Mathematical behavior of the solutions of a class of hyperbolic-type equation”, BAUN Fen. Bil. Enst. Dergisi, vol. 20, no. 3, pp. 117–128, 2018, doi: 10.25092/baunfbed.483072.
ISNAD Pişkin, Erhan - Yüksekkaya, Hazal. “Mathematical Behavior of the Solutions of a Class of Hyperbolic-Type Equation”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/3 (October 2018), 117-128. https://doi.org/10.25092/baunfbed.483072.
JAMA Pişkin E, Yüksekkaya H. Mathematical behavior of the solutions of a class of hyperbolic-type equation. BAUN Fen. Bil. Enst. Dergisi. 2018;20:117–128.
MLA Pişkin, Erhan and Hazal Yüksekkaya. “Mathematical Behavior of the Solutions of a Class of Hyperbolic-Type Equation”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 3, 2018, pp. 117-28, doi:10.25092/baunfbed.483072.
Vancouver Pişkin E, Yüksekkaya H. Mathematical behavior of the solutions of a class of hyperbolic-type equation. BAUN Fen. Bil. Enst. Dergisi. 2018;20(3):117-28.