Research Article
BibTex RIS Cite

125 cc motorcycle preference in Turkey: A study on the impact of new regulations and an integrated multi-criteria decision-making approach

Year 2024, Volume: 27 Issue: 52, 409 - 424, 30.12.2024
https://doi.org/10.31795/baunsobed.1477289

Abstract

The practical usage and economic advantages of motorcycles, particularly in urban transportation, make them an attractive option. The amendment of regulation published in the Official Gazette on February 10, 2024, which grants holders of Class B licenses the right to operate motorcycles up to 125 cc, has increased demand in this segment. Through this motivation, this study aims to determine the criteria that influence the choice of motorcycles with a 125 cc engine capacity and to identify the most suitable motorcycle model based on these criteria using multi-criteria decision-making methods. Initially, the effective criteria were weighted using the Statistical Variance (SV) method, and then the models of reliable brands were ranked using the Mixed Aggregation by Comprehensive Normalization Technique (MACONT). This study contributes to the literature by addressing regulations newly implemented in Turkey and enriching the application field of current multi-criteria decision-making methods in an integrated manner. Additionally, it provides practical guidance by illuminating the complex decision-making process that users face when choosing a motorcycle. In conclusion, the findings of the study are thought to help shape the motorcycle market demand by aiding drivers in selecting the most suitable motorcycle model that meets their economic and practical needs.

References

  • Aksakal, B., Ulutaş, A., Balo, F., & Karabasevic, D. (2022). A New Hybrid MCDM Model for Insulation Material Evaluation for Healthier Environment. Buildings, 12(5), 655.
  • Altay, B. C., Celik, E., Okumus, A., Balin, A., & Gul, M. (2023). An integrated interval type-2 fuzzy BWM-MARCOS model for location selection of e-scooter sharing stations: The case of a university campus. Engineering Applications of Artificial Intelligence, 122, 106095.
  • ApriliaTr (2023). 10 Ekim 2023 tarihinde https://cdn.aprilia.com.tr/asset/images/modeller/sr-gt/aprilia-sr-gt-brosur.pdf?v=2qs adresinden erişildi.
  • Ayyildiz, E. (2022). A novel pythagorean fuzzy multi-criteria decision-making methodology for e-scooter charging station location-selection. Transportation Research Part D: Transport and Environment, 111, 103459.
  • Biswas, T., & Saha, P. (2019). Selection of commercially available scooters by new MCDM method. International Journal of Data and Network Science, 3(2), 137-144.
  • Chakraborty, S., Raut, R. D., Rofin, T. M., & Chakraborty, S. (2024). An integrated G-MACONT approach for healthcare supplier selection. Grey Systems: Theory and Application, 14(2), 318-336.
  • Colovic, A., Prencipe, L. P., Giuffrida, N., & Ottomanelli, M. (2024). A multi-objective model to design shared e-kick scooters parking spaces in large urban areas. Journal of Transport Geography, 116, 103823.
  • Çakır, E. (2023, December). Neutrosophic Fuzzy Selected Element Reduction Approach (NF-SERA): Assessment of E-Scooter Parking Area. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1234-1238). IEEE.
  • Deveci, M., Gokasar, I., Pamucar, D., Chen, Y., & Coffman, D. M. (2023). Sustainable E-scooter parking operation in urban areas using fuzzy Dombi based RAFSI model. Sustainable cities and society, 91, 104426.
  • Deveci, M., Gokasar, I., Pamucar, D., Coffman, D. M., & Papadonikolaki, E. (2022). Safe E-scooter operation alternative prioritization using a q-rung orthopair Fuzzy Einstein based WASPAS approach. Journal of Cleaner Production, 347, 131239.
  • Ecer, F., & Torkayesh, A. E. (2022). A stratified fuzzy decision-making approach for sustainable circular supplier selection. IEEE Transactions on Engineering Management, 71, 1130-1144.
  • Ecer, F., Küçükönder, H., Kaya, S. K., & Görçün, Ö. F. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation research part a: policy and practice, 172, 103667.
  • Gamal, A., Abdel-Basset, M., Hezam, I. M., Sallam, K. M., Alshamrani, A. M., & Hameed, I. A. (2024). A computational sustainable approach for energy storage systems performance evaluation based on spherical-fuzzy MCDM with considering uncertainty. Energy Reports, 11, 1319-1341.
  • HondaTr (2023). 10 Ekim 2023 tarihinde https://www.honda.com.tr/motosiklet/modeller/scooter/honda-pcx125 adresinden erişildi.
  • Huang, S., & Chen, H. (2023). Research on quality evaluation of industry-education integration for rural vocational education in the perspective of rural revitalization with PL-MACONT method. Journal of Intelligent & Fuzzy Systems, 44(6), 9743-9755.
  • Kamble, A. G. (2023). Selection of two-wheelers using analytical hierarchy process. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.03.234
  • Krishankumar, R., Ravichandran, K. S., & Tyagi, S. K. (2020a). Solving cloud vendor selection problem using intuitionistic fuzzy decision framework. Neural Computing and Applications, 32, 589-602.
  • Krishankumar, R., Ravichandran, K. S., Liao, H., & Kar, S. (2020b). An integrated decision framework for group decision-making with double hierarchy hesitant fuzzy linguistic information and unknown weights. International Journal of Computational Intelligence Systems, 13(1), 624-637.
  • Krishankumar, R., Ravichandran, K. S., Liu, P., Kar, S., & Gandomi, A. H. (2021). A decision framework under probabilistic hesitant fuzzy environment with probability estimation for multi-criteria decision making. Neural Computing and Applications, 33, 8417-8433.
  • Krishankumar, R., Ravichandran, K. S., Murthy, K. K., & Saeid, A. B. (2018). A scientific decision-making framework for supplier outsourcing using hesitant fuzzy information. Soft Computing, 22, 7445-7461.
  • Kubik, A. (2022). Selection of an Electric Scooter for Shared Mobility Services Using Multicriteria Decision Support Methods. Energies, 15, 8903. https://doi.org/10.3390/en15238903
  • Kutluay, H. (2017). Tork Nedir, Beygir Gücünden Farkı Nedir, Nasıl Hesaplanır?. 10 Ekim 2023 tarihinde https://www.makaleler.com/tork-nedir-beygir-gucunden-farki-nedir-nasilhesaplanir adresinden erişildi.
  • KymcoTr (2023). 10 Ekim 2023 tarihinde https://www.kymco.com.tr/tr/agility-s-125i.html adresinden erişildi.
  • Li, Z., Liu, A., Shang, W. L., Li, J., Lu, H., & Zhang, H. (2023). Sustainability assessment of regional transportation: An innovative fuzzy group decision-making model. IEEE Transactions on Intelligent Transportation Systems. 24(12), 15959-15973.
  • Liang, Y. (2024). An ExpTODIM-MACONT Based Multiple-Attribute Group Decision-Making Technique for Smart Classroom Teaching Evaluation of Basic English under Interval-Valued Pythagorean Fuzzy Circumstances. IEEE Access. 12, 14130-14145, https://doi.org/10.1109/ACCESS.2024.3355737
  • Manirathinam, T., Narayanamoorthy, S., Geetha, S., Ahmadian, A., Ferrara, M., & Kang, D. (2024). Assessing performance and satisfaction of micro-mobility in smart cities for sustainable clean energy transportation using novel APPRESAL method. Journal of Cleaner Production, 436, 140372.
  • NTV, 2024. 1 Nisan 2024 tarihinde https://www.ntv.com.tr/turkiye/b-sinifi-ehliyetle-125-cc-motosiklet-kullanilabilecek-karar-resmi-gazetede,Hch-ZPkj806HgIZxzDq-2Q adresinden erişildi.
  • Oğuz, A. (2023). E-Ticaret Yönetiminde Kullanılan Dağıtım Araçlarının Bütünleşik CRITIC ve Edas Yöntemi İle Seçilmesi. Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1-18.
  • Özdağoğlu, A., Keleş, M. K., Altınata, A., & Ulutaş, A. (2021a). Combining different MCDM methods with the Copeland method: An investigation on motorcycle selection. Journal of process management and new technologies, 9(3-4), 13-27.
  • Özdağoğlu, A., Öztaş, G. Z., Keleş, M. K., & Genç, V. (2021b). An integrated PIPRECIA and COPRAs method under fuzzy environment: A case of truck tractor selection. Alphanumeric Journal, 9(2), 269-298.
  • Özdağoğlu, A., Öztaş, G. Z., Keleş, M. K., & Genç, V. (2022). A comparative bus selection for intercity transportation with an integrated PIPRECIA & COPRAS-G. Case Studies on Transport Policy, 10(2), 993-1004.
  • Patel, A., Jha, S., Soni, R., & Fuse, K. (2020, April). Comparative study of MCDM techniques COPRAS and TOPSIS for selection of electric motorcycles. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand (pp. 16-21).
  • Rao, R. V., & Patel, B. K. (2010). A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10), 4738 4747.
  • Roig-Costa, O., Miralles-Guasch, C., & Marquet, O. (2024). Shared bikes vs. private e-scooters. Understanding patterns of use and demand in a policy-constrained micromobility environment. Transport policy, 146, 116-125.
  • Roslan, A., & Naharudin, N. (2023). Identification of e-Scooter Shared (ESS) Stations by using a GIS-based MCDM Approach. International Journal of Geoinformatics, 19(5), 69-78.
  • Silveira-Santos, T., Vassallo, J. M., & Torres, E. (2022). Using machine learning models to predict the willingness to carry lightweight goods by bike and kick-scooter. Transportation research interdisciplinary perspectives, 13, 100568.
  • Simic, V., Dabic-Miletic, S., Tirkolaee, E. B., Stević, Ž., Deveci, M., & Senapati, T. (2023). Neutrosophic CEBOM-MACONT model for sustainable management of end-of-life tires. Applied Soft Computing, 143, 110399.
  • Sutrisno, A., Wuisang, C. E. V., & Yusupa, A. (2023). Disaster readiness assessment model using integrated statistical variance and proximity value index. International Journal of Emergency Services, 12(2), 197-212.
  • SymTr (2023). 10 Ekim 2023 tarihinde https://www.sym-tr.com/jet-x-tcs-abs-liquid-cooling/ adresinden erişildi.
  • TÜİK (2023). 19 Mart 2023 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Motorlu-Kara-Tasitlari-Aralik-2023-49432 adresinden erişildi.
  • Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third-party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI-MACONT model. Expert Systems with Applications, 241, 122680.
  • Wen, Z., & Liao, H. (2021). Pension service institution selection by a personalized quantifier-based MACONT method. International Journal of Strategic Property Management, 25(6), 446-458.
  • Wen, Z., Liao, H., & Zavadskas, E. K. (2020). MACONT: Mixed aggregation by comprehensive normalization technique for multi-criteria analysis. Informatica, 31(4), 857-880.
  • YamahaTr (2023). 10 Ekim 2023 tarihinde https://www.yamaha-motor.eu/tr/tr/scooters/urban-mobility/pdp/nmax-125-2023/ adresinden erişildi.
  • Yuniaristanto, Y., Sutopo, W., Hisjam, M., & Wicaksono, H. (2023). Factors Influencing Electric Motorcycle Adoption: A Logit Model Analysis. In E3S Web of Conferences, 465, p. 02035. EDP Sciences.

Türkiye'de 125 cc motosiklet tercihi: Yeni düzenlemelerin etkisi ve bütünleşik çok kriterli karar verme yaklaşımı üzerine bir çalışma

Year 2024, Volume: 27 Issue: 52, 409 - 424, 30.12.2024
https://doi.org/10.31795/baunsobed.1477289

Abstract

Motosikletlerin pratik kullanımı ve ekonomik avantajları, özellikle şehir içi ulaşımda cazip bir seçenek olarak öne çıkmaktadır. 10 Şubat 2024 tarihli resmî gazetede yayınlanan yönetmelik değişikliği ile B sınıfı ehliyetine sahip olanların 125 cc'ye kadar olan motosikletleri kullanma hakkı elde etmesi, bu segmentteki talebi arttırmıştır. Bu motivasyon ile bu çalışmada 125 cc motor hacmine sahip motosikletlerin tercih edilmesinde etkili olan kriterleri ve bu kriterler doğrultusunda en uygun motosiklet modelini çok kriterli karar verme yöntemleri ile belirlemeyi amaçlamaktadır. Öncelikle İstatistiksel Varyans (SV) yöntemi ile etkili kriterler ağırlıklandırılmış sonrasında ise Kapsamlı Normalizasyon Tekniği ile Karma Toplama (MACONT) yöntemi ile güvenilir markaların modelleri sıralanmıştır. Bu çalışma, Türkiye'de uygulanmaya yeni başlanan düzenlemeleri ele alması ve güncel çok kriterli karar verme yöntemlerinin bütünleşik olarak uygulama alanını zenginleştirmesi sayesinde literatüre katkı sağlamaktadır. Ayrıca, kullanıcıların motosiklet seçimi yaparken karşılaştıkları karmaşık karar verme sürecine ışık tutarak, pratik bir rehberlik sunmaktadır. Sonuç olarak, çalışmanın bulgularının, sürücülerin ekonomik ve pratik gereksinimlerini karşılayacak en uygun motosiklet modelini seçmelerine yardımcı olarak motosiklet pazarındaki talebi şekillendireceği düşünülmektedir.

References

  • Aksakal, B., Ulutaş, A., Balo, F., & Karabasevic, D. (2022). A New Hybrid MCDM Model for Insulation Material Evaluation for Healthier Environment. Buildings, 12(5), 655.
  • Altay, B. C., Celik, E., Okumus, A., Balin, A., & Gul, M. (2023). An integrated interval type-2 fuzzy BWM-MARCOS model for location selection of e-scooter sharing stations: The case of a university campus. Engineering Applications of Artificial Intelligence, 122, 106095.
  • ApriliaTr (2023). 10 Ekim 2023 tarihinde https://cdn.aprilia.com.tr/asset/images/modeller/sr-gt/aprilia-sr-gt-brosur.pdf?v=2qs adresinden erişildi.
  • Ayyildiz, E. (2022). A novel pythagorean fuzzy multi-criteria decision-making methodology for e-scooter charging station location-selection. Transportation Research Part D: Transport and Environment, 111, 103459.
  • Biswas, T., & Saha, P. (2019). Selection of commercially available scooters by new MCDM method. International Journal of Data and Network Science, 3(2), 137-144.
  • Chakraborty, S., Raut, R. D., Rofin, T. M., & Chakraborty, S. (2024). An integrated G-MACONT approach for healthcare supplier selection. Grey Systems: Theory and Application, 14(2), 318-336.
  • Colovic, A., Prencipe, L. P., Giuffrida, N., & Ottomanelli, M. (2024). A multi-objective model to design shared e-kick scooters parking spaces in large urban areas. Journal of Transport Geography, 116, 103823.
  • Çakır, E. (2023, December). Neutrosophic Fuzzy Selected Element Reduction Approach (NF-SERA): Assessment of E-Scooter Parking Area. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1234-1238). IEEE.
  • Deveci, M., Gokasar, I., Pamucar, D., Chen, Y., & Coffman, D. M. (2023). Sustainable E-scooter parking operation in urban areas using fuzzy Dombi based RAFSI model. Sustainable cities and society, 91, 104426.
  • Deveci, M., Gokasar, I., Pamucar, D., Coffman, D. M., & Papadonikolaki, E. (2022). Safe E-scooter operation alternative prioritization using a q-rung orthopair Fuzzy Einstein based WASPAS approach. Journal of Cleaner Production, 347, 131239.
  • Ecer, F., & Torkayesh, A. E. (2022). A stratified fuzzy decision-making approach for sustainable circular supplier selection. IEEE Transactions on Engineering Management, 71, 1130-1144.
  • Ecer, F., Küçükönder, H., Kaya, S. K., & Görçün, Ö. F. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation research part a: policy and practice, 172, 103667.
  • Gamal, A., Abdel-Basset, M., Hezam, I. M., Sallam, K. M., Alshamrani, A. M., & Hameed, I. A. (2024). A computational sustainable approach for energy storage systems performance evaluation based on spherical-fuzzy MCDM with considering uncertainty. Energy Reports, 11, 1319-1341.
  • HondaTr (2023). 10 Ekim 2023 tarihinde https://www.honda.com.tr/motosiklet/modeller/scooter/honda-pcx125 adresinden erişildi.
  • Huang, S., & Chen, H. (2023). Research on quality evaluation of industry-education integration for rural vocational education in the perspective of rural revitalization with PL-MACONT method. Journal of Intelligent & Fuzzy Systems, 44(6), 9743-9755.
  • Kamble, A. G. (2023). Selection of two-wheelers using analytical hierarchy process. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2023.03.234
  • Krishankumar, R., Ravichandran, K. S., & Tyagi, S. K. (2020a). Solving cloud vendor selection problem using intuitionistic fuzzy decision framework. Neural Computing and Applications, 32, 589-602.
  • Krishankumar, R., Ravichandran, K. S., Liao, H., & Kar, S. (2020b). An integrated decision framework for group decision-making with double hierarchy hesitant fuzzy linguistic information and unknown weights. International Journal of Computational Intelligence Systems, 13(1), 624-637.
  • Krishankumar, R., Ravichandran, K. S., Liu, P., Kar, S., & Gandomi, A. H. (2021). A decision framework under probabilistic hesitant fuzzy environment with probability estimation for multi-criteria decision making. Neural Computing and Applications, 33, 8417-8433.
  • Krishankumar, R., Ravichandran, K. S., Murthy, K. K., & Saeid, A. B. (2018). A scientific decision-making framework for supplier outsourcing using hesitant fuzzy information. Soft Computing, 22, 7445-7461.
  • Kubik, A. (2022). Selection of an Electric Scooter for Shared Mobility Services Using Multicriteria Decision Support Methods. Energies, 15, 8903. https://doi.org/10.3390/en15238903
  • Kutluay, H. (2017). Tork Nedir, Beygir Gücünden Farkı Nedir, Nasıl Hesaplanır?. 10 Ekim 2023 tarihinde https://www.makaleler.com/tork-nedir-beygir-gucunden-farki-nedir-nasilhesaplanir adresinden erişildi.
  • KymcoTr (2023). 10 Ekim 2023 tarihinde https://www.kymco.com.tr/tr/agility-s-125i.html adresinden erişildi.
  • Li, Z., Liu, A., Shang, W. L., Li, J., Lu, H., & Zhang, H. (2023). Sustainability assessment of regional transportation: An innovative fuzzy group decision-making model. IEEE Transactions on Intelligent Transportation Systems. 24(12), 15959-15973.
  • Liang, Y. (2024). An ExpTODIM-MACONT Based Multiple-Attribute Group Decision-Making Technique for Smart Classroom Teaching Evaluation of Basic English under Interval-Valued Pythagorean Fuzzy Circumstances. IEEE Access. 12, 14130-14145, https://doi.org/10.1109/ACCESS.2024.3355737
  • Manirathinam, T., Narayanamoorthy, S., Geetha, S., Ahmadian, A., Ferrara, M., & Kang, D. (2024). Assessing performance and satisfaction of micro-mobility in smart cities for sustainable clean energy transportation using novel APPRESAL method. Journal of Cleaner Production, 436, 140372.
  • NTV, 2024. 1 Nisan 2024 tarihinde https://www.ntv.com.tr/turkiye/b-sinifi-ehliyetle-125-cc-motosiklet-kullanilabilecek-karar-resmi-gazetede,Hch-ZPkj806HgIZxzDq-2Q adresinden erişildi.
  • Oğuz, A. (2023). E-Ticaret Yönetiminde Kullanılan Dağıtım Araçlarının Bütünleşik CRITIC ve Edas Yöntemi İle Seçilmesi. Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 24(3), 1-18.
  • Özdağoğlu, A., Keleş, M. K., Altınata, A., & Ulutaş, A. (2021a). Combining different MCDM methods with the Copeland method: An investigation on motorcycle selection. Journal of process management and new technologies, 9(3-4), 13-27.
  • Özdağoğlu, A., Öztaş, G. Z., Keleş, M. K., & Genç, V. (2021b). An integrated PIPRECIA and COPRAs method under fuzzy environment: A case of truck tractor selection. Alphanumeric Journal, 9(2), 269-298.
  • Özdağoğlu, A., Öztaş, G. Z., Keleş, M. K., & Genç, V. (2022). A comparative bus selection for intercity transportation with an integrated PIPRECIA & COPRAS-G. Case Studies on Transport Policy, 10(2), 993-1004.
  • Patel, A., Jha, S., Soni, R., & Fuse, K. (2020, April). Comparative study of MCDM techniques COPRAS and TOPSIS for selection of electric motorcycles. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand (pp. 16-21).
  • Rao, R. V., & Patel, B. K. (2010). A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10), 4738 4747.
  • Roig-Costa, O., Miralles-Guasch, C., & Marquet, O. (2024). Shared bikes vs. private e-scooters. Understanding patterns of use and demand in a policy-constrained micromobility environment. Transport policy, 146, 116-125.
  • Roslan, A., & Naharudin, N. (2023). Identification of e-Scooter Shared (ESS) Stations by using a GIS-based MCDM Approach. International Journal of Geoinformatics, 19(5), 69-78.
  • Silveira-Santos, T., Vassallo, J. M., & Torres, E. (2022). Using machine learning models to predict the willingness to carry lightweight goods by bike and kick-scooter. Transportation research interdisciplinary perspectives, 13, 100568.
  • Simic, V., Dabic-Miletic, S., Tirkolaee, E. B., Stević, Ž., Deveci, M., & Senapati, T. (2023). Neutrosophic CEBOM-MACONT model for sustainable management of end-of-life tires. Applied Soft Computing, 143, 110399.
  • Sutrisno, A., Wuisang, C. E. V., & Yusupa, A. (2023). Disaster readiness assessment model using integrated statistical variance and proximity value index. International Journal of Emergency Services, 12(2), 197-212.
  • SymTr (2023). 10 Ekim 2023 tarihinde https://www.sym-tr.com/jet-x-tcs-abs-liquid-cooling/ adresinden erişildi.
  • TÜİK (2023). 19 Mart 2023 tarihinde https://data.tuik.gov.tr/Bulten/Index?p=Motorlu-Kara-Tasitlari-Aralik-2023-49432 adresinden erişildi.
  • Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third-party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI-MACONT model. Expert Systems with Applications, 241, 122680.
  • Wen, Z., & Liao, H. (2021). Pension service institution selection by a personalized quantifier-based MACONT method. International Journal of Strategic Property Management, 25(6), 446-458.
  • Wen, Z., Liao, H., & Zavadskas, E. K. (2020). MACONT: Mixed aggregation by comprehensive normalization technique for multi-criteria analysis. Informatica, 31(4), 857-880.
  • YamahaTr (2023). 10 Ekim 2023 tarihinde https://www.yamaha-motor.eu/tr/tr/scooters/urban-mobility/pdp/nmax-125-2023/ adresinden erişildi.
  • Yuniaristanto, Y., Sutopo, W., Hisjam, M., & Wicaksono, H. (2023). Factors Influencing Electric Motorcycle Adoption: A Logit Model Analysis. In E3S Web of Conferences, 465, p. 02035. EDP Sciences.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Operations Research, Business Administration
Journal Section Business
Authors

Volkan Genç 0000-0003-2184-482X

Gülin Zeynep Öztaş 0000-0002-6901-6559

Aşkın Özdağoğlu 0000-0001-5299-0622

Early Pub Date December 30, 2024
Publication Date December 30, 2024
Submission Date May 3, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2024 Volume: 27 Issue: 52

Cite

APA Genç, V., Öztaş, G. Z., & Özdağoğlu, A. (2024). Türkiye’de 125 cc motosiklet tercihi: Yeni düzenlemelerin etkisi ve bütünleşik çok kriterli karar verme yaklaşımı üzerine bir çalışma. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27(52), 409-424. https://doi.org/10.31795/baunsobed.1477289

Baun SOBED