Research Article
BibTex RIS Cite

Effect of deformation on gamow-teller strength and electron capture cross-section for chromium isotopes

Year 2020, Volume: 10 Issue: 1, 25 - 29, 18.06.2020
https://doi.org/10.17678/beuscitech.640157

Abstract

In this work, we explore
the role of deformation parameter (β) on the calculated Gamow-Teller (GT)
strength distributions and electron capture cross-sections (ECC) for
46,48,50Cr
isotopes within the formalism of the proton neutron-quasi-particle random phase
approximation (pn-QRPA). Three different β parameters were used in the present
study. Two of them were calculated by using the interacting boson model (IBM)
and the macroscopic-microscopic (Mac-mic) models. The third one is the
experimental β values obtained by employing its relation with the experimental
B(E2)↑ values. The GT strength distributions
were
widely dispersed among all the daughter states of the given isotopes. They were
found to have an inverse relation with the
β
parameter i.e
decreasing with increasing the β value. The ECC was
computed as a function of the β parameter and the results suggest that the
calculated ECC decreased with decreasing value of the β for the selected cases.

Supporting Institution

Higher Education Commission Pakistan, Pakistan Science Foundation , Higher Education Council of Turkey,

Project Number

5557/KPK/NRPU/R&D/HEC/2016; 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 ; PSFTUBITAK/KP-GIKI (02); MEV-2019-1745, MEV-2018-300

Thanks

J.-U. Nabi would like to acknowledge the support of the Higher Education Commission Pakistan through project numbers 5557/KPK/NRPU/R&D/HEC/2016 and 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 and Pakistan Science Foundation through project number PSFTUBITAK/KP-GIKI (02). M. Böyükata would like to acknowledge the support of Higher Education Council of Turkey through project number MEV-2019-1745 of project-based international exchange program. N. Çakmak would like to acknowledge the support of Higher Education Council of Turkey through project number MEV-2018-300 of project-based international exchange program.

References

  • [1] G. M. Fuller, W. A. Fowler and M. J. Newman, Astrophys. J. Suppl. Ser. 42 (1980).
  • [2] E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.
  • [3] P. G. Giannaka and T. S. Kosmas, Electron Capture Cross Sections for Stellar Nucleosynthesis, Adv. H. E. Phys. 2015, (2014) 11.
  • [4] G. Marti ̀nez-Pinedo, K. Langanke, D. J. Dean, Astrophys. J. Suppl. Ser. 126 (2000) 493.
  • [5] A. Heger, K. Langanke, G. Marti ̀nez-Pinedo, S. E. Woosley, Phys. Rev. Lett. 86 (2001) 1678.
  • [6] A. Ullah, J.-U. Nabi and M. Riaz, Int. J. Mod. Phys. D 28 (2019) 2040011.
  • [7] J.-U. Nabi and M. Riaz, J. Phys. G: Nucl. Part. Phys. 47, (2019) 085201.
  • [8] J.-U. Nabi, M. Böyükata, Nucl. Phy. A 947 (2016) 182.
  • [9] J.-U. Nabi, Böyükata, Astrophys Space Sci. 362 (2017) 9.
  • [10] J.-U. Nabi, M. Ishfaq, M. Böyükata, M. Riaz, Nucl. Phy. A 966 (2017) 1.
  • [11] S. G. Nilsson, G Nilsson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29 (1955) 16.
  • [12] K. Ikeda, S. Fujii and J. I. Fujita, Phys. Lett. 3, (1963) 271.
  • [13] I. Ragnarsson and R. K. Sheline, Phys. Scr. 29, (1984) 385.
  • [14] G. Audi, F. Kondev, M. Wang, W. Huang, and S. Naimi, Chinese physics C, 41 (2017) 030001.
  • [15] K. Nakamura, (Particle Data Group): J. Phys. G, Nucl. Part. Phys. 37, (2010) 075021.
  • [16] J. C. Hardy, and I. S. Towner, Phys. Rev. C 79, (2009) 055502.
  • [17] N. Paar, G. Col‘o, E. Khan, and D. Vretenar, Phys. Rev.C 80 (2009) 055801.
  • [18] J. D. Walecka, Theoretical nuclear and subnuclear physics, (World Scientific Publishing Company, 2004).
  • [19] N. Gove and M. Martin, At. Data Nucl. Data Tables, 10 (1971) 205-219.
  • [20] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Astrophys. and Space Sc. 361 (2016) 71.
  • [21] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Phys. Scr. 91 (2016) 055301.
  • [22] P. Moller and J. R. Nix, At. Data Nucl. Data Tables, 26 (1981) 165-196.
  • [23] A. Arima and F. Iachello., Annals of Physics 99 (1976) 253-317.
  • [24] A. E. L. Dieperink, O. Scholten and F. Iachello, Phys. Rev. Lett. 44 (1980) 1747.
  • [25] A. E. L. Dieperink, O. Scholten, Nucl. Phys. A 346 (1980) 125.
  • [26] J. N. Ginocchio, M. W. Kirson, Phys. Rev. Lett. 44 (1980) 1744.
  • [27] J. N. Ginocchio, M. W. Kirson, Nucl. Phys. A 350 (1980) 31.
  • [28] P. Van Isacker and J.-Q. Chen, Phys. Rev. C 24 (1981) 684.
  • [29] A. Bohr and B. R. Mottelson, Nuclear Structure. Volume 2: Nuclear Deformation, World Scientific Publishing, 1998.
  • [30] National Nuclear Data Center (NNDC), http://www.nndc. bnl.gov/, 2019.
  • [31] K. Langanke, E. Kolbe, and D. Dean, Phys. Rev. C, 63 (2001) 032801.
Year 2020, Volume: 10 Issue: 1, 25 - 29, 18.06.2020
https://doi.org/10.17678/beuscitech.640157

Abstract

Project Number

5557/KPK/NRPU/R&D/HEC/2016; 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 ; PSFTUBITAK/KP-GIKI (02); MEV-2019-1745, MEV-2018-300

References

  • [1] G. M. Fuller, W. A. Fowler and M. J. Newman, Astrophys. J. Suppl. Ser. 42 (1980).
  • [2] E. M. Burbidge, G. R. Burbidge, W. A. Fowler and F. Hoyle, Rev. Mod. Phys. 29 (1957) 547.
  • [3] P. G. Giannaka and T. S. Kosmas, Electron Capture Cross Sections for Stellar Nucleosynthesis, Adv. H. E. Phys. 2015, (2014) 11.
  • [4] G. Marti ̀nez-Pinedo, K. Langanke, D. J. Dean, Astrophys. J. Suppl. Ser. 126 (2000) 493.
  • [5] A. Heger, K. Langanke, G. Marti ̀nez-Pinedo, S. E. Woosley, Phys. Rev. Lett. 86 (2001) 1678.
  • [6] A. Ullah, J.-U. Nabi and M. Riaz, Int. J. Mod. Phys. D 28 (2019) 2040011.
  • [7] J.-U. Nabi and M. Riaz, J. Phys. G: Nucl. Part. Phys. 47, (2019) 085201.
  • [8] J.-U. Nabi, M. Böyükata, Nucl. Phy. A 947 (2016) 182.
  • [9] J.-U. Nabi, Böyükata, Astrophys Space Sci. 362 (2017) 9.
  • [10] J.-U. Nabi, M. Ishfaq, M. Böyükata, M. Riaz, Nucl. Phy. A 966 (2017) 1.
  • [11] S. G. Nilsson, G Nilsson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29 (1955) 16.
  • [12] K. Ikeda, S. Fujii and J. I. Fujita, Phys. Lett. 3, (1963) 271.
  • [13] I. Ragnarsson and R. K. Sheline, Phys. Scr. 29, (1984) 385.
  • [14] G. Audi, F. Kondev, M. Wang, W. Huang, and S. Naimi, Chinese physics C, 41 (2017) 030001.
  • [15] K. Nakamura, (Particle Data Group): J. Phys. G, Nucl. Part. Phys. 37, (2010) 075021.
  • [16] J. C. Hardy, and I. S. Towner, Phys. Rev. C 79, (2009) 055502.
  • [17] N. Paar, G. Col‘o, E. Khan, and D. Vretenar, Phys. Rev.C 80 (2009) 055801.
  • [18] J. D. Walecka, Theoretical nuclear and subnuclear physics, (World Scientific Publishing Company, 2004).
  • [19] N. Gove and M. Martin, At. Data Nucl. Data Tables, 10 (1971) 205-219.
  • [20] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Astrophys. and Space Sc. 361 (2016) 71.
  • [21] J.-U. Nabi, A. N. Tawfik, N. Ezzelarab, and A. A. Khan, Phys. Scr. 91 (2016) 055301.
  • [22] P. Moller and J. R. Nix, At. Data Nucl. Data Tables, 26 (1981) 165-196.
  • [23] A. Arima and F. Iachello., Annals of Physics 99 (1976) 253-317.
  • [24] A. E. L. Dieperink, O. Scholten and F. Iachello, Phys. Rev. Lett. 44 (1980) 1747.
  • [25] A. E. L. Dieperink, O. Scholten, Nucl. Phys. A 346 (1980) 125.
  • [26] J. N. Ginocchio, M. W. Kirson, Phys. Rev. Lett. 44 (1980) 1744.
  • [27] J. N. Ginocchio, M. W. Kirson, Nucl. Phys. A 350 (1980) 31.
  • [28] P. Van Isacker and J.-Q. Chen, Phys. Rev. C 24 (1981) 684.
  • [29] A. Bohr and B. R. Mottelson, Nuclear Structure. Volume 2: Nuclear Deformation, World Scientific Publishing, 1998.
  • [30] National Nuclear Data Center (NNDC), http://www.nndc. bnl.gov/, 2019.
  • [31] K. Langanke, E. Kolbe, and D. Dean, Phys. Rev. C, 63 (2001) 032801.
There are 31 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Asim Ullah This is me 0000-0002-2653-310X

Muahmmad Riaz This is me 0000-0003-4521-4259

Jameel-un Nabı 0000-0002-8229-8757

Mahmut Böyükata 0000-0002-8065-9993

Necla Çakmak 0000-0001-5989-6663

Project Number 5557/KPK/NRPU/R&D/HEC/2016; 9-5(Ph-1-MG-7) Pak-Turk/R&D/HEC/2017 ; PSFTUBITAK/KP-GIKI (02); MEV-2019-1745, MEV-2018-300
Publication Date June 18, 2020
Submission Date October 30, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

IEEE A. Ullah, M. Riaz, J.-u. Nabı, M. Böyükata, and N. Çakmak, “Effect of deformation on gamow-teller strength and electron capture cross-section for chromium isotopes”, Bitlis Eren University Journal of Science and Technology, vol. 10, no. 1, pp. 25–29, 2020, doi: 10.17678/beuscitech.640157.